
By
Quit

Contract Review
Issue date
5/10/2024

Overview
The following is a review of Gondi V3, an NFTfi platform that allows lending and borrowing
across various collections on Ethereum Mainnet. Loans are offered against a given asset, and
can be refinanced (either fully or partially) while active, as long as the new loan is strictly better
than the one it is replacing.

Users can also deposit to an ERC4626 style pool, which can be tapped for loans according to
granular terms defined by the contract owner. While not in use, pooled funds are put to work
accumulating interest via Aave or Lido.

Contracts in scope for this review include:

● AddressManager.sol
● AuctionLoanLiquidator.sol
● AuctionWithBuyoutLoanLiquidator.sol
● InputChecker.sol
● LiquidationDistributor.sol
● LiquidationHandler.sol
● Multicall.sol
● UserVault.sol
● callbacks/CallbackHandler.sol
● callbacks/PurchaseBundler.sol
● loans/BaseLoan.sol
● loans/BaseLoanHelpers.sol
● loans/LoanManager.sol
● loans/LoanManagerRegistry.sol
● loans/MultiSourceLoan.sol
● loans/WithLoanManager.sol
● utils/Hash.sol
● utils/Interest.sol
● utils/TwoStepOwned.sol
● utils/ValidatorHelpers.sol
● utils/WithProtocolFee.sol
● validators/NftBitVectorValidator.sol
● validators/NftPackedListValidator.sol
● validators/RangeValidator.sol



This review is based on SHA ac51cc6102fcf5ab274f8812eb585539332431f4, and aims
to identify security vulnerabilities, opportunities for gas optimization, and general best practice
recommendations with regards to the contracts in scope. The review should not be considered
an endorsement of the project, nor is it a guarantee of security.

Findings

Incorrect @title specification
Severity: Informational
In AaveUsdcBaseInterestAllocator.sol, the contract’s natspec specifies
EthBaseInterestAllocator as the title. Recommend changing this to
AaveUsdcBaseInterestAllocator.

Several TODOs exist throughout the codebase
Severity: Informational
There are several TODO comments that have not been reconciled throughout the codebase.
TODO typically indicates unfinished code. Recommend completing these before going live. The
following lines are affected:

- AuctionWithBuyoutLoanLiquidator.sol L61
- LoanManager.sol L10
- AaveUsdcBaseInterestAllocator.sol L16, L90
- ValidatorHelpers.sol L4
- NftPackedListValidator L4

View functions are not declared as view in interface
Severity: Informational
The following functions are declared as view in their implementations, but not in the underlying
interface. Recommend marking their visibility as view in the interfaces as well.

- IFeeManager.sol
- getFees()
- getPendingFees()
- getPendingFeesSetTime()

- IPool
- getMaxTotalWithdrawalQueues()
- getMinTimeBetweenWithdrawalQueues()
- getBaseInterestAllocator()
- isActive()
- getPendingBaseInterestAllocator()
- getPendingBaseInterestAllocatorSetTime()

- IPoolOfferHandler
- getMaxDuration()



getPendingBaseInterestAllocator and
getPendingBaseInterestAllocatorSetTime can be packed together into a struct
Severity: Gas Optimization
In Pool.sol, the base interest allocator can be set in a two step process that involves
declaring the new interest allocator to be set, waiting for UPDATE_WAIT_TIME, and then
confirming the new interest allocator. Only the contract owner can declare a new interest
allocator, but anybody can confirm it after UPDATE_WAIT_TIME has passed. Two variables are
set in both functions - getPendingBaseInterestAllocatorSetTime and
getPendingBaseInterestAllocator.
getPendingBaseInterestAllocatorSetTime can comfortable fit into a uint96 so that
both variables can be packed into a struct and stored with a single SSTORE.

Arithmetic can be marked unchecked where safe
Severity: Gas Optimization
Where there is no concern of over/underflow, arithmetic throughout the contracts can be marked
unchecked to save a small amount of gas. Some example lines that are affected include:

- WithdrawalQueue.sol L67, L97-99, L124, L128, 143
- Pool.sol L152, L163, L323, L444, L461, L476, L504, L509-510,

L525, L546-547, L649, L663, L672, L689-690, L741, L743, L749

The savings are small, but recommend implementing unchecked math where you feel
comfortable.

Recommend a push-pull mechanism for TwoStepOwned
Severity: Low
It is currently possible to mistakenly set an inaccessible address via TwoStepOwned. As an
extra security step to ensure that the new owner is accessible, recommend altering the second
step signature to remove the address input, leaving just transferOwnership() as the
function signature. Then, ensure that msg.sender == pendingOwner before completing the
handover.

Summary

Gondi contracts are generally well written, follow best practices, and make a best effort at
avoiding centralization risk. The two step process with a minimum wait is appreciated, as it gives
users time to react should the contract owner attempt to tweak settings in a malicious or
unfavorable way.

Interactions with outside contracts are mostly considered a black box in the eyes of this review -
so, it is essential to remain cautious when dealing with parts of the code that interact with Lido,



Aave, etc. NFTs with nonstandard behavior could also lead to unintended behavior within Gondi,
so it is important to ensure compatibility before adding support for new NFT contracts.

Overall, Gondi continues to push the boundaries of NFTfi, providing new ways to ensure capital
efficiency whether actively lending or not. As with any sufficiently complex protocol, users
should exercise caution, especially in the days closer to launch. However, no issues of concern
were uncovered as a result of this audit.

Note: findings related to the pool mechanism have been removed from this report, as the
mechanism has been pushed to be included in a later version


